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Time Series

Student Project

March 18, 2006

Finding an Appropriate Time Series Model  

Moody’s Seasoned Aaa Interest Rates, 1983-2006

How many cups of coffee do you drink each day?  The average citizen likely remembers trends in his coffee consumption over the past week, but probably doesn’t keep track of his caffeine mania over a month… six months… two years.  If Blog the caveman (who drinks coffee, of course) makes a charcoal mark on the wall of the cave representing the number of cups of coffee he drinks each day, and continues to make marks for years and years—Blog escapes being eaten by a pterodactyl and becomes quite a long-lived caveman—he constructs a primitive time series.  When we observe and keep track of a measurement over a period of time, we can not only notice clearly what’s happened in the past, but also make predictions about future values.  Let’s take one such series, the Moody’s Seasoned Aaa long-term corporate bond rates from January 1983 to January 2006, and answer one basic question:  what is a reasonable time series model for these interest rates?

We begin by examining the data provided.  First, some basic measurements:  we note that the interest rates include 23.083 years of data, for a total of 5,798 observation points.  Although the data specifies the month and the day of the rate, a rate is not given for every day of each month—most months include about 21 measurements.  On further examination, however, we note that days exist in the data for which the rate stayed the same as the previous rate, and so we can rule out the possibility of days missing from the data because of no rate change.  Our time series is still valid, but any model we assume would be slightly more accurate if we were given data for these missing days as well.   However, the few missing days likely would not affect the choice of a model to any great extent.  
 [NEAS: The candidate uses daily changes in the Moody’s long-term corporate bond yield.  

The NEAS web site shows daily values for Moody’s long-term corporate bond yield, since Moody’s announces the rate each business day.  You may combine rates into a monthly average, or you may use the rate on the first day of each month or week.  Fitting an ARIMA model to the daily rates (or their first differences) may create spurious effects.

Suppose interest rates are a random walk with a drift of 0.5 basis points a day. Tomorrow’s rate is forecasted as today’s rate plus 0.005%. Interest rates increase by 2½ basis points a week, or 52 × 0.025% = 1.30% a year.  This is a reasonable interest rate process.

A random walk is not stationary.  The first differences are a stationary white noise process.  The mean of the white noise process is the drift of the random walk, or 0.005%.

If the interest rate is 8.002% on day 1, the expected rates for days 2, 3, 4, … are

{8.007, 8.012, 8.017, 8.022, 8.027, 8.032, 8.037, 8.042, 8.047, 8.0452 …}

We measure interest rates in basis points, or 0.01%.  With two decimal place accuracy, the expected rates are

{8.01%, 8.01%, 8.02%, 8.02%, 8.03%, 8.03%, 8.04%, 8.04%, 8.05%, 8.05% …}

Because of the rounding, the first differences are an oscillating series: 

{0.00, 0.01, 0.00, 0.01, 0.00, 0.01, 0.00, 0.01, 0.00, … }

We model this series as AR(1) with δ = 0.01 and φ1 = –1, not as a white noise process.   This gives a mean of 0.01% / (1 – (–1)) = 0.005%, which is correct, but the oscillating pattern and the autoregressive parameter are not correct. This is a spurious relation; the true interest rate first differences are a white noise process with no oscillation.

Moody’s long-term corporate bond yield declined by about 25 basis points a year over the past two decades.  This may create spurious effects if we fit daily first differences to an ARIMA model.

Measurement errors are not always easy to spot.  Suppose interest rates are a random walk with a drift of 0.4 basis points per day.  The expected rate increases by 2 basis points a week, or 1% a year.  The first differences are a white noise process with a mean of 0.004%.  If the interest rate is 8.00% on day 1, the forecasts for days 2, 3, 4, … are

{8.004, 8.008, 8.012, 8.016, 8.02, 8.024, 8.028, 8.032, 8.036, 8.040 …}

With two decimal place accuracy, the forecasts are

{8.00%, 8,01%, 8.01%, 8.02%, 8.02%, 8.02%, 8.03%, 8.03%, 8.04%, 8.04% …}

The first differences are an oscillating series: 

{0.00, 0.01, 0.00, 0.01, 0.00, 0.00, 0.01, 0.00, 0.01, 0.00, … }

The sample autocorrelations are negative for lags 1 and 3, positive for lags 2 and 4, and +1 for lag 5.  We might model this series as an AR(5) process instead of white noise.  The spurious process is not always simple year to year oscillation.] 

We also need to consider whether we should choose a shorter time period for our series.  The graphs of the series and first differences indicate that all segments of the data seem continuous and consistent; that is, we do not note any areas of the graphs where results differ widely from the rest of the graph.  The downward slope, apart from the usual stochasticity, holds for the entire 23 year period.  Even the segment that stands out the most, roughly 1988-1993, differs from the rest only because it varies slightly less (the error terms for these years are slightly smaller, so the first differences graph is more uniform and the original data stays closer to a line).  Because of the uniformity of the data, we can safely choose the entire 23-year period for examination.

 [NEAS: For choosing eras, examine the drifts and variances. Changes in the drift are easier to spot than changes in the mean or variance.  If the drift is zero, the time series itself may be stationary.  If the drift is a constant non-zero value, the mean is changing.  The time series itself is non-stationary, but its first differences may be stationary.] 


After having chosen our time period, our first step is to examine the data to determine the distribution of the original series.  An initial examination seems to suggest that the rates have a downward drift, since the graphed series shows the rates decreasing slowly from about 11% in 1983 to 5% in 2006 (see Excel Project Summary, Time Series Chart).  Also, the deviations from the average (see Deviations Chart) become increasingly negative over time, corroborating the downward trend.  If the preliminary graphs had not clearly exhibited the trend, we could also have examined the autocorrelation function to specify the series’ downward drift over time.  

When we perform a linear regression of the original series to test it against an AR(1) model, we find that the slope of the line is very close to 1, indicating that our data follows a random walk. The regressed series has a y-intercept of 0.001749, indicating that if we based our original series on an AR(1) model, the series would have a slight upward trend.  Clearly, an AR(1) model of the original rates does not fully describe the time series.

 [NEAS: As the candidate has done, first graph the time series itself.  To highlight drifts, use moving averages.  Use monthly average rates (the average rate for the days in that month)  or use the first rate shown for each month.  The two series do not differ materially.  Use whichever method is more convenient, depending on your familiarity with Excel and VBA. Then take a 12 month moving average to identify drifts.  If you see a non-zero drift, graph the deviations.  If the change in the mean is steady, take first differences.  If the change in the mean is abrupt, you may have to divide into two eras.  This time series has relatively smooth changes.]
[NEAS: The daily Moody’s long-term bond rate is like a moving average of the short rate over twenty years.  The short rate is the instantaneous force of interest.  The long-term bond rate should have a random walk, even if the short rates are a white noise process.  In practice, short rates are usually a random walk or an AR(1) process, and long rates may be a weighted harmonic average of powers of the short rate.

Your student project might examine Moody’s corporate bond spread. Divide the monthly rate computed above by the twenty year Treasury bond rate.  The spread focuses on economic conditions, such as private investment spending, instead of the inflation rate.

Your student project might examine the residuals of the corporate bond spread regressed on GNP growth, GDP growth, unemployment, or other economic indices.  This is the ideal time series project.  The corporate bond spread removes the effects of inflation, and the regression on economic variables removes the effects of major economic changes.  The remaining corporate bond spread may be well modeled by an ARIMA process.

If you take both the regression analysis and time series courses, you may combine the student projects in this manner. Use a structural (regression) model to identify the relevant economic explanatory variables and a time series ARIMA process to model the residuals.]  

We should also consider whether seasonality affects our data.  If we take averages of the rates for each month, we find that very little variation exists, as shown by the chart below:
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Our interest rates reach a very slight peak in May, and seem to fall in December, but overall stay roughly level.  Following the principle of parsimony, we want to choose the simplest model that fits our data well; since it seems that seasonality does not have a significant effect on interest rates, we move on to examining stationarity.

 [NEAS: The long-term corporate bond rate is like a twenty year moving average of short rates.  For the student project, you should check for seasonality; you need not incorporate seasonality if it is weak.

A financial economist might consider this seasonality significant, especially if it appears in the corporate bond spread.  A student project might focus on the seasonality in the corporate bond spread.  If you do the combined student project mentioned above, you should examine the seasonality in the residuals of the corporate bond spread.

Ideas for Seasonality:

~
Seasonality is more important for short rates than for long rates.  Compare seasonality in first differences of three month Treasury bills, the yield on the Treasury bills, the first differences in twenty year Treasury bonds, and yield on Treasury bonds.

~
Compare seasonality in the real interest rate vs the nominal interest rates.

~
Compare seasonality in the corporate bond spread vs Treasury securities.] 


In order to best model the series, we must obtain a stationary series by taking first differences of the original rates.  Since the downward drift seems to be roughly linear, these first differences will likely be stationary.  After doing this and forming a graph (see First Differences Chart), we note that the first differences are solidly mean-reverting; we can use them for our stationary model.  We don’t need to analyze second differences in this case, both because the first differences are stationary and because an interest rate series generally does not call for differencing a second time.

We next calculate and graph the sample autocorrelation function of the differenced series. We started to analyze our initial series by comparing it to an AR(1) model, but now that we’ve obtained a stationary series, let’s see if other models fit our data better.  If an MA(1) or ARMA(1,1) model fits better, we’ll see characteristic patterns in the correlogram—the graph of how much each successive value depends on the previous values.  Our correlogram shows no clear oscillation; rather, it zooms down to zero after the first value (see Autocorrelation Chart).  Since the autocorrelation drops to zero quickly after only one period, we know that the series has a strong possibility of being autoregressive with order one, so we verify our initial choice of an AR(1) model.  Had the sample autocorrelation function displayed non-zero values for several lags before centering on zero, we might have suspected a model with a higher order.  
 [NEAS: If the sample autocorrelation function drops to zero after the first lag, the choice of an AR(1) model vs an MA(1) model depends on several items:

~
If the autocorrelation of lag 1 is high in a time series with many observations and then drops to zero, we suspect an MA(1) model.  For example, if the series has 1,000 observations and the sample autocorrelation is 50% (or –50%) for lag 1 and zero afterward, we assume an MA(1) model.

~
If the sample autocorrelation of lag 1 is not that high, its square may be overwhelmed by random fluctuations, and an AR(1) model is equally likely.  Since an AR(1) model is more common than an MA(1) model, we start with the AR(1) model.  For example, if the series has 100 observations and the sample autocorrelation is 20% for lag 1 and zero afterward, we assume an AR(1) model.] 


Next, we must find the AR(1) parameters by regressing the differenced series.  For an AR(1) model, we seek the constants in the equation yt  =  Φ1yt-1 + δ + ε1 .  When we do this, we find that our slope, or Φ1, is equal to 0.08989, and the y-intercept δ equals -0.00103.  Since the y-intercept divided by one minus the sum of the coefficients equals the mean for an autoregressive model, our calculated mean of -0.00113 should be close to the sample mean for first differences, -0.001128, which we verify.  
 [NEAS: Several checks of the ARIMA process should always be performed.

For a random walk, the slope coefficient is one and the intercept is the drift.  We test if the estimated β is statistically different from one, and we see if the estimated α is the same as the observed drift in the graph.  (We use a moving average to observe the drift.)

For a stationary AR(1) process, the intercept divided by the complement of φ1 is the mean of the time series.  We calculate the mean and check this.  If this is not the case, we may have made an error in the regression analysis.] 


Now, having numerically specified our model, we use the Box-Pierce Q statistic to test its validity.  We do this by summing the squares of the first “k” residual autocorrelations and multiplying by the total number of observations (5,798 in our case) to obtain “Q,” a chi-square statistic with “k-1” degrees of freedom.  We assume k equal to 41 and calculate Q =  68.24, which would just barely lead us to reject the model in favor of another at the 99.5 percent level (compared to the significant chi-square number at 40 degrees of freedom, 66.77).  However, since this statistic is based on such a large number of observations, we can safely assume that our model is not widely inaccurate.  Had we chosen half of the number of observations for analysis, we would have obtained a Q statistic of about 34, leading us to accept the model at all levels.  

Having gone through the steps to find a reasonable time series model for the set of Moody’s Aaa rates given, we are able to note how useful our model might be for predicting future Moody’s rates.  Perhaps Blog would have profited from such a model, being able to predict how frequently he would enjoy coffee in the future, pterodactyl or no pterodactyl.  He might even have traded charcoal tally marks for the Box-Pierce Q statistic.   
 [NEAS: We use a 90% or 95% confidence interval for the Box-Pierce Q statistic, not a 99.5% confidence interval.  We compare the AR(1) model with an AR(2) model, to see whether additional lags have a material effect on the in-sample goodness-of-fit tests.  We compare the forecasts from these two models to see which has the lower out-of-sample mean squared error.] 

