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Introduction:

One of the recommended projects for the Time Series Analysis course is seasonality adjustments.  Although I work in the actuarial field, I’ve always had an interest in weather.  The weather outside is a natural fit for a time series analysis, particularly seasonality.  One could analyze a myriad of seasonal weather data.  Annual snowfall, weekly rainfall, daily temperature, and many other data sets are stochastic time series.  The local weather man can give his prediction for the high temperature to be 40°F tomorrow, but it when tomorrow comes, we find that it could be 42, 38, or perhaps much different, such as 48.  Often he/she is not exactly right and sometimes, even forecasts a range (e.g. “the high tomorrow will in the low 40’s”).
In this project, I analyzed the average monthly temperature for Dubuque, Iowa from 1964 through 1975.  Meteorological data can be hard to come by on the Internet, but I did find a website that presented many different time series that could be analyzed [1].  The goal of this project is to make adjustments for seasonality in order to produce a white noise process.  The mechanism used and the conclusions made can be found below.
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[NEAS: Weather is an excellent subject for time series analysis.  Daily temperature and rainfall can be fit to ARIMA models.

Daily temperature and rainfall are seasonal.  We can adjust for seasonality two ways:

~
Deseasonalize the data: divide each daily temperature (rainfall) by the average for that day of the year

~
Use a seasonal autoregressive parameter in the ARIMA model.

We use the second method when the current year’s figure depends on the previous year’s.  For annual insurance policies, the premium writings on May 1 of this year depend on the premium writings the previous May 1, since most of last year’s policies are renewed.  The December toy sales of a store are closely related to those of the previous December.  The sales from two years ago are less relevant.

For daily temperature and rainfall, we use long-term averages.  If last year’s May 1 temperature was unusually warm, we do not presume that this year’s May 1 will be similar.

Deseasonalizing daily temperatures (rainfall) requires smoothing the averages.  If average annual temperatures are 55 for May 1, 60 for May 2, and 56 for May 3, we might choose an average temperature of 62 for each day.  Graduation (smoothing) techniques are not covered in the time series course, and you may use a simple average. 

After data are deseasonalized, we test for stationarity with scatter-plots and correlograms. We expect no change in the mean or drift, but the volatility may change over the year.

If the data are stationary, we fit to an ARIMA process.  The time series should have a positive φ1 parameter: if the temperature is high (above its average) on May 1, it will probably be high on May 2 as well.

Daily temperatures are not a random walk.  If the temperature was 10 above its average on May 1, we might expect it to be 6 above its average on May 2, not 10.

The ARIMA model is a proxy for meteorological information, such as warm fronts and cold fronts lasting more than one day, so the process may be more complex than AR(1).  Suppose the temperature on May 2 is 55.  The forecast for May 3 may differ if the May 1 temperature was 50 and increased to 55 by May 2 or was 60 and decreased to 55 by May 2.  This is an AR(2) model; you may find an even higher order.

A moving average parameter makes sense for weather forecasting.  If we expected 55 for May 1 but it was actually 50, we might assume a cold front has moved in, and reduce our forecast for May 2 as well.

You can examine AR(1), AR(2), and MA(1) models for daily temperature.  If you have Minitab, you can examine an ARMA(1,1) model as well.

Actual weather forecasting is more complex than the simple ARIMA process suggested for the student projects.  The purpose of the student project is to show that you can apply the statistical techniques to real data, not that you can forecast the weather.

Rainfall makes an excellent student project because of annual seasonality, autoregressive and moving average components, and weekly seasonality in some metropolitan areas.  In some urban areas, Mondays and Tuesdays have less rain than Saturdays and Sundays.  A possible reason is that auto exhaust around the urban area builds up during weekdays, causing rain on Friday, Saturday, and Sunday.  People drive less on weekends and the rainfall clear the exhaust particles from the air, so the rain stops by Monday.  Perhaps this is another justification for the Sabbath: a day to clear the exhaust in the air.  We don’t know how strong this phenomenon is; you can test it in your student project.

Weather data are widely available and accurate.  Records of local daily temperature and rainfall in hundreds of locations have been kept for over a hundred years.  You can do a project on the local temperature in your state or city.

The time series processes are stable. Long-term temperature changes are exceedingly slow.  The global cooling of 1950-1970 and global warming of 1970-2000 are less than 1 Celsius and are submerged in the random error term.

You can do numerous fitting projects and comparison projects.  You can compare an urban area and a nearby rural area, or two adjoining areas that have different weather conditions.  For example, you can compare the ARIMA process in coastal bays vs inland areas, such as San Francisco vs Oakland, or New York City vs New Jersey towns, or Boston vs Western Massachusetts.

You can compare the ARIMA process for summer months vs winter months.  You remove the seasonal effects on average temperature and average rainfall by deseasonalizing.  You can examine whether the volatility of temperature or rainfall differs by month.

You can use the weather data for both time series and regression analysis projects.

~
Your time series project may form an ARIMA process for daily temperature.

~
Rainfall is affected by the change in the temperature, with a rise in temperature often signaling or accompanying rain.  You can  examine the optimal regression equation for rainfall as a function of change in temperature, after adjusting for seasonality.

Your project may focus on forecast efficiency.  You may regress rainfall on change in temperature (or other items drawn from a meteorological data base) and examine if the standard errors of the forecasts agree with the equations in the textbook.  They will not be exact, since the true relations are not linear.

Your project may focus on serial correlation.  If you regress rainfall on change in temperature, the residuals should have positive serial correlation.

Some project templates on the discussion board focus on actuarial topics, such as interest rates and loss reserving.  The sophistication of your analysis depends on the detail in the project templates.

~
If NEAS provides full project templates and posts sample projects submitted by other candidates, we expect you to produce a good analysis.

~
For projects like daily temperature and rainfall, we focus on the project design.  Set up testable hypotheses, such as “daily temperature follows an AR(2) process.”  Explain the implications of this hypothesis, such as “if temperature follows an AR(2) process, the residuals are a white noise process.”  Explain how to test the hypothesis, such as “if the residuals are a white noise process, the sum of squared deviations has a χ-squared distribution.  Show the results of the test and state the conclusion.] 

Data Analysis:

I started off by plotting the raw data and examining the sample autocorrelations.  As can be expected with outside temperature data, it is very seasonal with regular peaks in the sample autocorrelation graphs.  Temperatures from year-to-year (12-month lags) are positively correlated: they are always cold in the winter and always cold in the winter.  Temperatures in the summer and winter are negatively correlated (6-month lags) with each other.  In between lags have anywhere from none to a modest amount of correlation.  By graphical observation, this is clearly not a white noise process.  The Q statistic (Box and Pierce) for 50 lags was calculated to be 1,162, which is very large.  I then performed the following seasonality adjustments: 

(1) Monthly First Differences: 
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(2) Annual First Differences: 
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(3) Annual Second Differences: 
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(4) Deseasonalized Annual First Differences.

For each adjustment procedure used, the time series and autocorrelation graphs were made.  I then calculated the Q statistic (Box and Pierce) for the first 50 lags.  A conclusion was then drawn about whether we have a white noise process or not.  The time series graphs as well as the autocorrelation graphs can be seen in the accompanying Excel file.  The results and conclusions of the analyses follow below.

Results and Conclusions:

Theory

Our goal is to find an adjustment for seasonality that produces a white noise process.  In Pindyck and Rubinfeld[2], it states that to test the joint hypothesis that all of the autocorrelations are zero (for k>0), we use the Q statistic from Box and Pierce.  The Q statistic is:
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Q is approximately chi-square with K degrees of freedom.  Our null hypothesis in each scenario that we test is that our adjusted time series is a white noise process.  If Q is large, then our Q statistic is significant and we reject the null hypothesis and conclude that we do not have a white noise process.  If Q is small, then we accept our null hypothesis that we have a white noise process.

For this project, I chose to test using 50 lags.  Thus, our statistical tests will utilize the chi-square test with 50 degrees of freedom.  This seemed to be a sufficient amount of lags to base decisions on, especially since the examples in Pindyck and Rubinfeld used fewer lags in their examples.

Here are the critical values for the Chi-Square statistic with 50 degrees of freedom [3].

Chi-Square Critical Values for 50 Degrees of Freedom

	Level of Significance
	.05
	.01
	.001

	Critical Value
	67.51
	76.15
	86.66


Initial Time Series:

One can easily see the seasonality via the graphed time series and the sample autocorrelations.  There are very distinct positive peaks at t = 12, 24, 36, … and distinct negative peaks at t=6, 18, 30, … .As evidenced by a very large Q statistic, we can easily reject the null hypothesis, at the very least, using a .001 level of significance.  Thus it makes sense to take differences in order to remove the seasonality and hopefully produce a white noise process.

Monthly First Differences: 
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By inspecting the autocorrelations for these differences, the seasonality has been dampened some, since the correlation peaks are not as large (i.e. not as close to 1 and –1 as they were before taking differences).  There is still strong graphical evidence that seasonality is in our data however as we still have distinct, regular peaks in our graph.  In addition, we have statistical support.  The Q statistic is 821, which is still large and so we reject the null hypothesis that we have a white noise process.  Second differences need to be taken and/or we need to have seasonality removed from the data prior to taking differences.  Both cases are presented shortly.  It should not surprise us that monthly differences do not remove the seasonality for this data.

Annual First Differences: 
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Graphically, it appears that we have removed the seasonality of the data.  We do not see the distinct positive peaks at t = 12, 24, 36, … nor the distinct negative peaks at t=6, 18, 30, … A majority of the peaks are significantly small.  By Bartlett, the standard error of each coefficient is 
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 is approximately .17.  As can be seen from the plot of these coefficients, a majority of them are within a ± .17 band of zero.  We can also conclude that all of the autocorrelation coefficients are jointly zero.  We have a small Q statistic of 22, which is smaller than the critical value of 67.51, the leftmost critical value we have in our table.  Thus, we do not reject the null hypothesis and so we conclude that we indeed have a white noise process.

Annual Second Differences: 
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Although, it is not necessary from a statistical standpoint, second differences are computed for the sake of completeness.  From the graphs, it seems clear that we still have a white noise process.  With a Q statistic of 44, we still do not reject the null hypothesis and conclude that we have a white noise process.  It should be noted that taking these second differences produces a worse Q statistic demonstrating that one should stop after producing a white noise process form annual first differences.

Deseasonalized First Differences:

Additionally, the exercise of deseasonalizing the data prior to taking annual first differences was performed for the sake of demonstrating multiple methods.  This deseasonalization was done as follows.  After examining all of the January values, it was found that temperatures were on average 30 degrees less than the annual average temperature of 46 degrees.  As a result, 30 degrees was added to all January values.  A similar exercise was performed to the other months of data.  The following table presents the monthly changes made to the time series values:

	Month
	Month Adjustment Amount (Annual Avg. = 46°F)

	January
	+30

	February
	+26

	March
	+14

	April
	0

	May
	-12

	June
	-21

	July
	-25

	August
	-23

	September
	-15

	October
	-5

	November
	+10

	December
	+23


After deseasonalizing, annual first differences were taken.  Graphically and statistically, we produced another white noise process.  Our Q statistic was a sufficiently small value of 34 and we do not reject the null hypothesis of a white noise process.

Conclusion:

Here is a summary of the results of our various seasonality adjustment procedures for K=50.

	Seasonality Adjustment
	Q Statistic
	Rejection of Null (.05 level)
	Conclusion

	Initial Time Series
	1,162
	Reject
	Not white noise

	Monthly First Differences
	821
	Reject
	Not white noise

	Annual First Differences
	22
	Do not reject
	White noise

	Annual Second Differences
	41
	Do not reject
	White noise

	Deaseasonalized First Differences
	34
	Do not reject
	White noise


Four ways of adjusting for seasonality were presented in this project.  As stated in the NEAS posting, often the simplest method of deseasonalization works best [4].  That was indeed the case here as first differences of annual lags sufficiently produced a white noise process.  In modeling this time series, it is not necessary to go beyond this stationary series.  However for the purpose of demonstrating different methods, the other three were shown.
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� The theory utilized in this project appears in a subsequent section.
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