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Constructing a Time-Series Model of a Baseball Team’s Won-Lost Record

[NEAS: The candidate writing this student project took both the regression analysis and time series courses. He asked NEAS if he could do both student projects on sports won-loss records.

The candidate’s postings on the discussion forum and his homework assignments showed the NEAS faculty that he understood the statistical concepts.  NEAS replied that he should

~
Do a careful ARIMA modeling of one team for the time series student project.

~
Do an F test for the regression analysis student project.

Separate student projects are required for each on-line course.  But you can use the same data, which reduces the time needed to complete the student projects.

The daily temperatures project templates can also be used for both time series and regression analysis student projects.

~
Fit an ARIMA model for the daily temperature at one location.

~
Use an F test to compare the processes for two locations.  

If you use the same data for both student projects, be sure to provide complete analyses for each. For the time series student project attached to this posting, the candidate uses the Yule-Walker equations to fit an ARMA(1,1) model and to verify his AR(1) and AR(2) models, compares the implied autocorrelations for each process with the sample autocorrelations, and uses the models to forecast the last year of data.

This time series student project fits an ARIMA process to the Minnesota Twins won-loss record.  The student project is a good template for your own work, for several reasons:

~
It uses data from the NEAS web site with Excel for the analysis.  You can do similar analyses for any team in the four sports on the NEAS web site.  If you have only Excel, want an easily accessible time series, and like sports, this is a perfect student project.  More extensive data are available on other web sites, if you prefer other sports, countries, or teams, such as soccer, women’s basketball, or World Cup competition.

~
NEAS provides extensive project templates for sports won-loss records, with numerous postings and dialogues.  You can review past student projects with the NEAS faculty comments to make see what is expected. Every team differs: an AR(1) model may be optimal for basketball but an AR(4) model may be better for football.  Review the statistical techniques in the textbook, the NEAS postings and guides, and the past student projects with the faculty comments.  Apply them to your own data.

~
This candidate explains the statistical techniques.  The textbook shows the technique, but does not always provide an example.  Use this student project as a model if you have trouble with a statistical technique.  In particular, the candidate shows how to back into an ARMA(1,1) model and how to compare the implied autocorrelations with the sample autocorrelations.]

Introduction

Many baseball fans would love to discover a method to accurately predict their favorite team’s record of wins and losses in advance of the start of a baseball season.  This advance knowledge would prove very useful for a gambler, who could place bets on the outcome of a season with relative certainty of the results. Even baseball fans who don’t gamble might decide how much time, money, and emotional energy to invest in cheering for their team based on how well the team will do on the field in the upcoming season.

In reality, constructing a “perfect” model to predict a team’s future record with 100% certainty is impossible. This paper will, however, explore methods for finding the time series which most accurately models the historical won-lost records of the author’s favorite baseball franchise, the Minnesota Twins
. While the project of studying sports records was originally suggested by NEAS for students in its VEE Regression Analysis course, this same data is also very appropriate for students building a time-series model, as we will do in this paper.

Studying the sample autocorrelation function

The baseball franchise now known as the Minnesota Twins was founded in 1901, and has played in the American League every year since, so we currently have 105 years of data consisting of the team’s annual losing percentage (L%) from 1901 to 2005. The data is displayed on the accompanying Excel spreadsheet, “Data” tab. For the purposes of this analysis, we will build time series models using the first 100 observations from 1901 to 2000. During those 100 years, the Twins had an average annual L% of .5249. The most recent five observations from 2001 to 2005 will not be included in the data analysis so that we may use them for ex-post forecasting to test the effectiveness of our various models. Charts A and B below show the season-by-season L% and the sample autocorrelation function. Chart C shows autocorrelations for the first ten lags.
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Chart C – Sample Autocorrelations for first ten lags
	Lag
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	Corr
	0.505
	0.382
	0.296
	0.139
	0.137
	0.061
	0.097
	-0.022
	-0.087
	-0.069


There are several reasons to believe that this initial time series is stationary. For example, the autocorrelation function does decline fairly rapidly towards zero. Using Bartlett’s test as explained on page 496 of our Pindyck/Rubinfeld textbook, we know that with our 100 observations, we can expect the sample autocorrelation coefficients to be distributed with standard deviation 1/√(100) = .1. By the time we reach four lags, our sample autocorrelations are within two standard deviations of zero, and at six lags, the sample autocorrelations are within one standard deviation of zero. After six lags (with the exception of a couple data points around lags 23 and 24), the sample autocorrelations stay very close to zero. Our sample autocorrelation function in Chart B has a dampened sinusoidal shape that looks very similar to Figure 17.13 on page 542 of the textbook, and the textbook describes that function as typical of a stationary autoregressive (AR) process.

The sample autocorrelation function in chart B does not show characteristics of a purely moving average (MA) process. If the process were MA(q), the function would typically remain correlated for the first q lags, then drop immediately to an approximately zero value, rather than showing the somewhat-geometric decay that is more characteristic of a process that includes AR elements. Based on this observation, we will rule out the possibility of a purely MA process to explain the Minnesota Twins’ L% history.

It is possible that we could use a mixed autoregressive-moving average (ARMA) model for this time series. ARMA models also show a geometric decay in the sample autocorrelation function, as ours does. Because the textbook only gives us formulas for the most simple ARMA(1,1) model, this paper will compare only the ARMA(1,1) model with various purely AR models.

Because the initial time series appears stationary, there is no reason to take first differences before beginning our analysis. In other words, we will assume that d=0 in our ARIMA(p,d,q) model.

[NEAS: Form the correlogram for 10 or more lags, using all your data.  Before going on, examine the sample autocorrelations to see what ARIMA processes are likely.  In this student project, the candidate correctly notes that the standard deviation for a white noise process is 1/100 = 10%.  He then says that the sample autocorrelation for lag 4 is within two standard deviations.

We don’t have a simple built-in function for partial autocorrelations in Excel. The partial autocorrelation says how much each additional year adds to the sample autocorrelation.  We can form a rough estimate of the partial autocorrelation by hand.

~
The sample autocorrelation of lag 1 is 0.505.

~
A φ1 parameter of 0.505 gives an autocorrelation of lag 2 of 0.5052 = 0.255.  The observed sample autocorrelation of 0.382 adds 0.382 – 0.255 = 0.127.

~
As a rough estimate, autoregressive parameters of 0.505 for φ1 and 0.127 for φ2 give an autocorrelation of about 0.5054 + 0.1272 = 0.081 for lag 4.  We observe a sample autocorrelation of 0.139, which is 0.058 higher than 0.081.  This is about half a standard deviation away, and may reflect random fluctuation.

This rough estimate shows that the partial autocorrelation of lag 4 is not significant.  The student project does a more rigorous analysis.]

Choosing among autoregressive models

We now use linear regression to calculate values for the parameter coefficients of AR(1), AR(2), AR(3), and AR(4) models which will predict the Minnesota Twins’ L% based on one, two, three, or four years of previous L%s.  These equations use the symbol Lt to signify the dependent variable in our AR equations (typically referred to as yt in the textbook notation). Similarly, we will use notation Lt-n to signify the team’s L% n years before the year we are forecasting. So, Lt-1 indicates the L% one year ago, Lt-2 indicates the L% two years ago, and so on. The regression calculations are shown in the Excel tabs “AR(1),” “AR(2),” “AR(3),” and “AR(4).” The results are summarized below:
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Examining the above four equations, it is readily apparent that there is no additional explanatory value offered by the fourth equation for AR(4), with its lower value for adjusted R2. While the third equation does have (just barely) the highest adjusted R2 value, its t-statistics for the coefficients of Lt-2 and Lt-3 are relatively low, and the p-values for those coefficients are high, an indication that the coefficients are so close to zero that they likely do not offer any meaningful explanatory value. We will assume that the best of these four models is either AR(1) or AR(2), and continue our analysis using just those two of our purely AR models.

[NEAS: The candidate compares AR(1), AR(2), AR(3), and AR(4) models.  He knows that the AR(4) model has too many past years, but he includes it in the comparison to show the decline in the adjusted R2.  This is good statistical procedure:

Even if you believe the best model is an AR(1) or AR(2) process, include AR(3) and AR(4) models in your initial comparison to confirm that the adjusted R2 declines, the additional regression coefficients are not significant, and the error sum of squares stays about the same.  You can also do an F test or a Dickey-Fuller test to show that the additional explanatory variables are not helpful.

The candidate eliminates the AR(4) model by the lower R2, the negative β, and the high p-value.  The AR(3) model is also eliminated, since the increase in the adjusted R2 is not material and the p-value is too high (p.464). [The word document has typos in the t statistics for the AR(3) model.] The principle of parsimony says that if a more complex model doesn’t improve the in-sample fit and the additional regression coefficient is not significant, the model is unlikely to explain the time series better and will probably produce worse out-of-sample forecasts.] 

Using the Yule-Walker equations, we can verify that the values we calculated for the AR(1) and AR(2) coefficients make sense in relation to the sample autocorrelations we calculated in Chart C above. Most simply, for the AR(1) process, equation 17.28 on page 529 of the textbook tells us that ρ1 (the autocorrelation of lag 1, which is .505 in chart C) should equal Ф1 (the value of the coefficient for Lt-1, which is .507 in our AR(1) equation above). Our ρ1 and Ф1 are very close to each other, a good indication that we have done our previous calculations correctly and have created a good AR(1) model.

For AR(2), the Yule-Walker (Y-W) equations are given as equations 17.39 and 17.40 on page 531 of the textbook:

ρ1 = Ф1 / (1 - Ф2)

ρ2 = Ф2 + (Ф12 / (1 - Ф2) )

Plugging in our sample autocorrelations ρ1=.505 and ρ2=.382, and solving for Ф1 and Ф2 yields Y-W solutions Ф1 = .419 and Ф2 = .170, which are very close to the coefficients of .419 for Lt-1 and .175 for Lt-2 in the AR(2) equation above.
Estimating the parameters of an ARMA(1,1) model
Just as we used the Yule-Walker equations above to verify our AR parameters based on the sample autocorrelations, we can also “back into” the estimated parameters of an ARMA(1,1) model. Equations 17.58 and 17.59 on page 536 of our textbook tell us that for an ARMA(1,1) process:

ρ1 = (1 - Ф1Ө1)(Ф1 - Ө1) / (1 + Ө12 - 2 Ф1Ө1)  

ρ2 = Ф1ρ1
We have already calculated sample autocorrelations in chart C above, so we know that ρ1=.505 and ρ2=.382, with ρ1 and ρ2 representing the sample autocorrelations of lags 1 and 2 respectively. Solving the above equations for Ф1 and Ө1 using these values of ρ1 and ρ2 yields the following results:

Ф1 = .756 and Ө1 = .348.

Knowing that the overall mean of our sample data
 is an L% of μ = 0.525, we can solve equation 17.49 on page 535 of the textbook as it applies to an ARMA(1,1) model:

μ = δ / (1 - Ф1)

Plugging in our known value μ = 0.525 and our estimated Ф1 = .756, we solve the above equation and get δ = .128. We have now estimated all of the parameters in the ARMA(1,1) equation:
Lt 
= 
δ
+
Ф1 Lt-1 
- 
Ө1 εt-1
+ 
εt
to arrive at our ARMA(1,1) model:

Lt 
= 
.128
+
.756 Lt-1 
- 
.348εt-1
+ 
εt
[ARMA(1,1)]
We can now compare this with our two AR model choices:

Lt 
=
.259
+
.507 Lt-1
+ 
εt


[AR(1)]
Lt 
=
.213
+
.419 Lt-1
+
.175 Lt-2
+ 
εt
[AR(2)]
[NEAS: The two pages here on the Yule-Walker equations are a good template for your own student project.  We don’t need the Yule-Walker equations for the autoregressive processes, since the regression analysis gives better estimates of the parameters.  But the Yule-Walker equations verify that the autoregressive processes are reasonable.

For the ARMA(1,1) model, we back into the parameters with the Yule-Walker equations.  This student project shows the procedure.  If you are using Excel, this is the simplest way to form an ARMA(1,1) model. If you have a statistical package that does nonlinear regression, you can get slightly better estimates of the ARMA(1,1) parameters.]

Comparison of model autocorrelations
One way to choose the “best” model is to compare the autocorrelation function generated using the model parameters with the sample autocorrelation function generated by our actual data. Using equations 17.28, 17.41, and 17.59 from the textbook, we know that:

For an AR(1) model, ρk = (Ф1)k for all k
For an AR(2) model, ρk = Ф1ρk-1 + Ф2ρk-2 for all k > 2
For an ARMA(1,1) model, ρk = Ф1ρk-1 for all k > 2
The following chart gives the values we estimated for our model parameters:

	 
	Ф1
	Ф2
	Ө1
	δ

	AR(1)
	0.5070
	 
	 
	0.2589

	AR(2)
	0.4186
	0.1755
	 
	0.2132

	ARMA(1,1)
	0.7561
	 
	0.3484
	0.1280


Combining this information, we can generate the autocorrelation function for each of our three models, and compare it to the sample autocorrelations generated by the actual data:

	Lag
	sample autocorr
	AR(1) model autocorr
	AR(2) model autocorr
	ARMA(1,1) model autocorr

	1
	0.5051
	0.5070
	0.5077
	0.5051

	2
	0.3819
	0.2570
	0.3880
	0.3819

	3
	0.2957
	0.1303
	0.2515
	0.2888

	4
	0.1393
	0.0661
	0.1734
	0.2183

	5
	0.1374
	0.0335
	0.1167
	0.1651

	6
	0.0608
	0.0170
	0.0793
	0.1248

	7
	0.0968
	0.0086
	0.0537
	0.0944

	Sum of squared difference between model and sample for lags 3-7
	0.0532
	0.0057
	0.0112


As an example of how to read the above charts, an ARMA(1,1) model with parameters Ф1 = .7561, Ө1 = .3484, and δ = .1280 has an autocorrelation function with ρ3 = .2888. We compare this with the sample autocorrelation for our data set, which has ρ3 = .2957.

Keep in mind that we “backed into” our ARMA(1,1) coefficients by using the sample autocorrelations for lags 1 and 2 from our actual data set, which explains why the ARMA(1,1) autocorrelations for those first two lags exactly match the sample autocorrelations. Still, for subsequent lags, it is fair to compare the model autocorrelations to the sample autocorrelations. The last row of the above chart computes the sum of squared differences for lags 3 to 7, and finds that the AR(2) model most closely matches the data set in terms of model vs. sample autocorrelations.

[NEAS: The first test of the ARIMA process is a comparison of the implied autocorrelations with the observed sample autocorrelations.  The sample autocorrelations are stochastic, with a standard deviation of about 10% from random fluctuations, so they are not the same as the implied autocorrelations even if the ARIMA process is the correct model.  The difference in the error sum of squares between the AR(1) and AR(2) models (0.0532 vs 0.0057) suggests that a second past year helps the ARIMA process.]

Comparison of fitted values for our three models
As our textbook states on page 559, “Our objective is to predict future values of a time series subject to as little error as possible. For this reason we consider the optimum forecast to be that forecast which has the minimum mean-square forecast error.” One way to predict which of our models will generate the minimum forecast error is to see which of them has the smallest Error Sum of Squares (ESS) when fitting the model to our actual data. Let ŷt symbolize the fitted value predicted by the model for a certain observation, and Lt symbolize the actual value for that same observation. Then ESS is the sum of squared differences (Lt - ŷt)2 for each observation in that model.

For the purposes of this comparison, we will calculate the ESS for observations from the years 1906 to 2000:

ESS = 0.438 for AR(1)

ESS = 0.419 for AR(2)

ESS = 0.419 for ARMA(1,1)

All the models have a fairly similar ESS, although AR(2) and ARMA(1,1) are slightly better fits because they minimize ESS.

Analysis of model residuals using Durbin-Watson and Box-Pierce Statistics

On pages 554-555, the authors of our textbook state that “if the model has been specified correctly, the residuals εt should resemble a white noise process. In particular, we would expect the residuals to be nearly uncorrelated with each other.” Let us test our three models of the Minnesota Twins’ L% to see which model best meets the criteria that its residuals resemble white noise. To do this, we will test for serial correlation in the residuals using the Durbin-Watson (D-W) statistic, and we will test the sample autocorrelations of the residuals using the Box-Pierce statistic.

First, we form a series of the residual terms for each of our models
, with the residual defined, for each observation, as the difference between the actual observed value and the fitted value generated by the model. For each observation t, we will denote this residual as εt. We then calculate the D-W statistic using formula 6.22 on page 165 of our textbook:


 T
 T
D-W  = (
∑ (εt - εt-1)2 ) / (
∑ εt2 )

t=2
t=1
If a series of observations has no serial correlation, its D-W statistic should be very close to a value of 2. Here are the D-W statistics calculated for the residuals of our three time series models:

D-W = 2.18 for AR(1)

D-W = 1.99 for AR(2)

D-W = 2.04 for ARMA(1,1)

Using table 5 on page 610 of our textbook, we can see that all of these statistics are considered “close” to 2 and we cannot reject the null hypothesis that there is no serial correlation in the residuals. It is of interest to note, however, that the AR(2) and ARMA(1,1) models have D-W statistics closer to 2 than the AR(1) model. This could be an indication that the AR(1) model is a slightly less good fit than the other two models.

Next we will calculate the Box-Pierce statistic for the residuals of each model. This statistic is explained in formulas 18.15 and 18.16 on page 555 of our textbook. We first calculate the sample autocorrelation function for displacement k of the residuals, denoting it as rk, as:

rk = (
∑ εt εt-k ) / (
∑ εt2 )

 t
  t
We then calculate the Box-Pierce statistic Q composed of the first K residual autocorrelations as:


 K

Q  = T
∑  rk2    with T being the number of residual observations in the sample.

k=1
The closer the value of the Q statistic is to zero, the more likely that the residuals form a white noise process. One typically evaluates the Q statistic using a value of K which is “moderate” in relation to the number of observations T. Statisticians differ
 in their opinions of the best “moderate” value to use for K. We have approximately 100 observations for each of our models, so we will evaluate the Q statistic
 at various valuations of K ranging from 15 to 50.

The Box-Pierce Q statistic is distributed approximately as an X2 distribution with K-p-q degrees of freedom, with p and q representing our model parameters in ARMA(p,q). Therefore, for our AR(1) model, Q will be distributed with K-1 degrees of freedom, and for both the AR(2) and ARMA(1,1) model, Q will be distributed with K-2 degrees of freedom. The following Chart D shows the Q statistic calculations for each of our models for various valuations of K, alongside the critical values of the X2 distribution at a 10% significance level. If Q is less than the critical value, then we need not reject the null hypothesis that the residuals are white noise, and we believe that our model is acceptable.

	Chart D – Box-Pierce Q Statistic Valuations

K value
	AR(1)

 Q Stat
	AR(2)

Q Stat
	ARMA(1,1) Q Stat
	Chi-square critical value 10% signif.      K-1 Degrees of Freedom
	Chi-square critical value 10% signif.      K-2 Degrees of Freedom

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	15
	12.49
	8.00
	6.37
	21.06
	19.81

	20
	16.13
	10.84
	12.74
	27.20
	25.99

	25
	22.67
	15.33
	16.18
	33.20
	32.01

	30
	25.92
	17.28
	17.73
	39.09
	37.92

	35
	26.94
	17.91
	18.34
	44.90
	43.75

	40
	29.99
	20.82
	22.38
	50.66
	49.51

	45
	32.72
	22.98
	24.71
	56.37
	55.23

	50
	33.73
	23.70
	25.51
	62.04
	60.91


From the above chart, we see that no matter what value of K we choose, the Q statistic for all three models is well below the critical value. This is an indication that all three models generate residuals which are uncorrelated. Note, however, that the AR(2) and ARMA(1,1) models have much lower Q stat values than AR(1), indicating that they might be slightly better fits for our data.

Checking our models using ex-post forecasts

[NEAS: The candidate excludes years 2001 to 2005 to test the accuracy of each ARIMA model. Many student projects test the quality of the forecasts; these are out-of-sample goodness-of-fit tests.  The textbook shows one method; we recommend another.  You can use either method in your student project.

We can judge forecasts two ways:

Method #1: Derive forecasts from 1901 to 2000 and compare them with the actual won-loss records in the five subsequent years.  This is the technique in the textbook, which emphasizes the variance in later forecasts.

Illustration: An actuary may derive an interest rate process from 1901 to 2000 data to project interest rates for 2001 – 2005.  The actuary is pricing a long duration insurance product (an annuity) or a financial product (a guaranteed investment contract).

Other statisticians use this technique for non-stochastic time series, not for ARIMA models.  It is good for projecting average claim severities for the next five years, which follow a simple exponential trend. For stochastic time series, and especially for autoregressive processes, a random fluctuation in 2001 throws off all five forecasts.

Illustration: The Minnesota Twins may be a below average team for 1901 - 2000, with a 52.5% losing percentage.  The ARIMA process forecasts continued poor performance for the next five years.  But suppose the draft pick in 2001 turns out to be a star player, or a new coach changes the team’s performance, and the team has a 45% losing percentage for the next five years.

A good time series model has two attributes: (i) it smooths the random fluctuations by using longer-term averages and (ii) it picks up turning points by giving more weight to more recent years. To test the predictive ability of the models, we use one period ahead forecasts for each subsequent year.  Do the following for your student project:

Method #2: Estimate the ARIMA processes from 1901-2000 won-loss records.  Form AR(1), AR(2), ARMA(1,1), and AR(3) processes (if appropriate).  For baseball and basketball, the AR(3) process may not be needed if the third past year adds no value.

A common error is to ignore the AR(1) process if the AR(2) model and the ARMA(1,1) model have better in-sample fits.  For the forecasts, always include the simple models, which respond more quickly to turning points.

From the 1998, 1999, and 2000 won-loss records, forecast the 2001 won-loss record. We have the actual won-loss records for the autoregressive processes.  We don’t have the 2000 residual for the ARMA process.  

For the ARMA(1,1) process, we need the 1999 estimate for the 2000 won-loss record to get the 2000 residual.  But the 1999 estimate for 2000 uses the 1999 residual.  The 1999 residual is the 1999 actual won-loss record minus the estimate for 1999, which uses the 1998 residual.  No matter how many years we go back, we are missing a value.

To compute the forecasts for the ARMA(1,1) model, we code an Excel function to give all estimates starting at 1901.

~
We assume the actual won-loss records before 1901 are the long-term mean and the residuals are all zero. (There are no values before 1901.)

~
For 1901, the estimate is the long-term mean.  Verify that your ARMA(1,1) process gives this estimate.  If it does not, you have an error in your formula.

~
From the actual won-loss record and estimate for 1901, get the residual for 1901.

~
Continue in this fashion to get ARMA(1,1) estimates for years 1902 through 2001.  You need a single Excel formula which you copy 100 times.  You already have the time series of won-loss records in your Excel spread-sheet.  Getting the estimates takes a few minutes.

We now have the ARMA(1,1) forecast for 2001.

~
Using the actual 2001 won-loss record, determine the residual for 2001.

~
Using the actual values and residuals through 2001, determine the estimates for 2002.

~
Continue in this fashion to get the one period ahead forecasts through 2005.]

To calculate our models, we used actual L% data from 1901 to 2000. We did not use the most recent data from 2001 to 2005 so that we could check our models using an ex-post forecast. Chart E below shows the five-year forecasts that each of our models would have generated if we had made the forecasts after the 2000 baseball season.

	Chart E – Ex-post forecast comparison

Year
	Actual L% in year
	ARMA(1,1) forecast after 2000
	AR(1) forecast after 2000
	AR(2) forecast after 2000

	2001
	0.475
	0.560
	0.550
	0.560

	2002
	0.416
	0.551
	0.538
	0.547

	2003
	0.444
	0.545
	0.531
	0.540

	2004
	0.432
	0.540
	0.528
	0.535

	2005
	0.488
	0.536
	0.527
	0.532

	ESS of forecast (2001-2005)
	0.049
	0.039
	0.046


None of our models produce a very close fit. In reality, the Minnesota Twins had a change in fortune after the 2000 season, in which their L% was a rather high .574. After several years of high L%s, they improved greatly and became a winning team (with a low L%) from 2001 to 2005. Our models, which only use the most recent one or two years of data, would have predicted continued high L%s after the 2000 season. This is an example of the inherent difficulty of creating an accurate model for sports team results; it is very difficult for anyone to predict at what a point a team’s fortunes will take a sudden turn for the better or worse. So, while our AR(1) forecast has the smallest Error Sum of Squares (ESS) when compared to the team’s actual L%s, we will not put a lot of value in this comparison of our models, since all of the models performed so poorly in an ex-post forecast.

Choosing the best model
We have used various tools to compare our AR(1), AR(2), and ARMA(1,1) models. We compared model autocorrelations to sample autocorrelations, we calculated the Error Sum of Squares, and we checked the correlation of the residuals using Durbin-Watson and Box-Pierce Statistics. In all of these comparisons, we found the AR(2) and ARMA(1,1) models to be closer to our “ideal” value than the AR(1) model. 

More sophisticated analysis could be done to distinguish our ARMA(1,1) from our AR(2) model and decide on the best fit between these two, but thoroughly evaluating mixed autoregressive-moving average (ARMA) models is beyond the scope of this course. We will conclude our analysis without making a final conclusion as to which model is best.

[NEAS: Selecting the optimal ARIMA model is not easy.  The candidate correctly notes that the AR(2) model has the best in-sample fits, followed closely by the ARMA(1,1) model.  The AR(1) model gives the best forecasts for 2001 - 2005.

But all three models provide poor forecasts for 2001 - 2005.  The original PCAS paper on this topic notes that after a few years, the correlation between years is not significant.  For the Minnesota Twins, the partial autocorrelations are no longer significant after four years.

We infer that baseball teams change so much in a few years that long-term averages are not useful for predicting future performance.  We focus on the most recent year or two: AR(1), AR(2), and ARMA(1,1) models.

The δ parameter in these models depends on the long-term mean of a 52.5% losing percentage.  If experience more than four years old is of no value for predicting future won-loss records, the 52.5% mean may not be relevant.  

If baseball teams are similar in the long-run, the 52.5% mean is a historical aberration. We should use a 50% mean, which is the average mean for all teams combined.

We explain here the ideal test for the optimal ARIMA process.  It requires more work than is appropriate for a single student project, so you are not expected to do this test.

For each baseball team, we form AR(1), AR(2), and ARMA(1,1) models using experience through 2000. [Some teams have 100 years of experience; some have shorter periods.  The won-loss records change quickly, so even ten years of experience is useful.  We use all teams that began before 1990.]

For each team, we also form AR(1), AR(2), and ARMA(1,1) models with means of 50%.  We have six models for each team.  These models have larger autoregressive and moving average paramters.

For all teams combined, we form AR(1), AR(2), and ARMA(1,1) models. We form one model of each type that is used for all teams.  If the separate AR(1) models for each team had parameters ranging from 20% to 40%, the combined model may have a parameter of 30%.  The overall mean for all teams combined is a 50% won-loss record, so these models have means of 50%.

We forecast the 2001 - 2005 won-loss records for each team using the nine models.

~
Six models have different parameters for each team.  Of these six models, three have means of 50% and three have different means for each team.

~
Three models have the same parameters for each team.

We compute the error sum of squares for each of the nine models.  If we have 20 teams and 5 years, we have 100 data points.  We still have much random fluctuation, but these are enough points to get reasonably accurate results.

This analysis is much work for a single candidate.  For your own project, either

~
Follow the method in this student project.

~
Use a series of one period ahead forecasts. 

Keep two things in mind as you select the forecasting technique:

~
The series of one period ahead forecasts is less distorted by a single random fluctuation in 2001 or 2002.

~
You may see that AR(2), AR(3), and ARMA(1,1) fit better for 1901 through 2000 (in-sample goodness-of-fit) but may not forecast better (out-of-sample goodness-of-fit).

A word about first differences
The accompanying Excel document does contain a tab entitled “FirstDiff” which analyzes first differences of the Minnesota Twins’ L%. These first differences indicate the change in the Twins’ L% from one year to the next. Because we concluded that our initial data series is stationary, we did not conduct detailed analyses of the first difference function. It is interesting to note, however, that the autocorrelation of first differences at lag 1 is a significant negative number. This indicates that if the team improves its record one season, it is likely to decline the next season (and vice versa). Further study of the first difference function could yield some interesting results, but such study is beyond the scope of this paper.

Conclusion
In this project, we have analyzed various time series models that could be used to predict the success and failure of the Minnesota Twins. We concluded that our autoregressive models need only look back one or two seasons to obtain enough data to meaningfully predict the next year’s L%. We also found that a mixed autoregressive-moving average model ARMA(1,1) may offer a model that is similarly effective to an AR(2) model in predicting future results.

None of our models were perfect fits, however, and that is what we would expect. While it is enjoyable (and challenging) to create mathematical models that predict sports team results, the inherently random nature of sporting events makes it impossible to predict outcomes with anything close to 100% certainty. That is why sports fans stay interested in the games…you never know what is going to happen!
[NEAS: The three ARIMA models do not forecast well, because the time series turns suddenly in 2001.  The models were formed from a time period with a mean of 52.5% and they are applied to years with a mean of about 45%.  The AR(1) model is most responsive to the change, so the fit is slightly better, but the difference is not material.

The candidate uses the textbook method of forecasting.  (See footnote 9 of his write-up.)  The other method is preferred by many statisticians. Examine the one period ahead forecasts for each year against the actual won-loss records.

~
The AR(1), AR(2) and ARMA(1,1) models fit well beginning in 2003.

~
The AR(2) and ARMA(1,1) models fit better than the AR(1) model beginning in 2003.

These are the relations we expect from the in-sample goodness-of-fit tests.  No model predicts well a stochastic out-lier, such as the 2001 won-loss record.  All three models fit reasonably well after the time series turns.

The ARIMA models with means of 50% all fit better.  This reflects an important – but much disputed – statistical principle:

Many time series revert slowly to a long-term mean that is best estimated from a wider population of data, not from the time series alone.
The dispute centers on which time series this principle applies to.  It is true if the larger population is the same type of data, but not if the data differ materially for each time series.  If most baseball teams are similar to each other in the long-run, we should use the 50% overall mean in the ARIMA fitting.]

� The Minnesota Twins franchise was originally founded in 1901 in Washington, D.C., where the team was known as the Washington Senators. The Senators moved to Minnesota in 1961 and changed their name to the Minnesota Twins, and they have retained this same location and nickname through the present time. As a matter of simplification, this paper will refer to the franchise as “The Minnesota Twins” or simply “The Twins,” although the author acknowledges that it would be more historically accurate to refer to the franchise as “The Washington Senators/Minnesota Twins.”


� See section entitled “A word about first differences” on page 10 of this paper for some basic analysis of the first difference function of the Minnesota Twins’ L%.


� Overall mean L% is calculated in Excel, “Data” Tab, cell C102.


� These autocorrelation comparison calculations can be found in Excel, “Autocor” Tab.


� See Excel, “Fitted Values and ARMA(1,1)” tab, cells A7:H112 for calculations of ESS. When calculating ESS, we exclude the first few observations because of the variability involved in choosing a “seed” value for the previous error term to start generating fitted values for the ARMA(1,1) model. In cell F8, we choose an initial forecast for our first observation as the series mean .525. Choosing a different value (say, the previous year’s L% .551) would affect the first few fitted values for the model, but the model will then settle in to the same predictions no matter what the initial “seed” value.


� These series of residuals are calculated in Excel. The AR(1) residuals are in tab “AR(1),” cells  H24:H123, with cells I24:K124 used to calculate the AR(1) D-W statistic displayed in cell L124. Similarly, AR(2) residuals are in tab “AR(2),” cells I25:I123, with cells J25:L125 used to calculate the AR(2) D-W statistic displayed in cell M125. Finally, the ARMA(1,1) residuals are in tab “Fitted Values and ARMA(1,1),” cells L10:L105, with cells M10:O107 used to calculate the ARMA(1,1) D-W statistic displayed in cell P107.


� Information about statisticians’ differing opinions about choosing a value of K for the Box-Pierce stat was taken from the NEAS “Time Series Student Project” discussion postings entitled “Time Series Techniques: Correlogram, Durbin-Watson, Box-Pier…” and “Time Series: Preface to student project samples.”


� Box-Pierce Q statistics are calculated in Excel. The AR(1) calculations are in tab “AR(1),” cells M22:T120. The AR(2) calculations are in tab “AR(2),” cells N23:U120. The ARMA(1,1) calculations are in tab “Fitted Values and ARMA(1,1),” cells Q8:X102.


� The calculations for Chart E are found in Excel, tab “ex-post.” The ARMA(1,1) forecast uses the actual ARMA(1,1) forecast error from 2000 to generate the 2001 forecast, then assumes zero error when generating forecasts for 2002 to 2005. The autoregressive portion of all three models uses actual L% for 1999 and 2000 to create the first one or two forecasts, but then uses the forecast L%s as a basis for forecasting 2003, 2004, and 2005 L%s. In other words, the entire Chart E assumes that we made these forecasts after the 2000 season, and that we did not have access to any of the 2001 to 2005 data when we made the forecasts.
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