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I've chosen to do my Regression project on baseball winning percentages.  In this document, I summarize my findings and what I've learned, and I provide a walk-through of the accompanying Excel file.  In a nutshell, I checked to make sure there were correlations of baseball winning percentages among years, determined the optimal regression equations separately for the National and American Leagues (hereon abbreviated "NL" and "AL" respectively), and tested whether or not the same regression equation could be used for both leagues.

DATA

It took me some time to find a set of data post-1960 (the "expansion period") that showed reasonably strong correlations over a number of years.  I ultimately decided on NL and AL data from 1962 through 1983.  Six teams began after 1962 (Montreal and San Diego in the NL and Kansas City, Milwaukee, Toronto, and Seattle in the AL).  These six teams were excluded from the analysis.

[NEAS: The candidate uses 22 years and 20 teams.  He properly excludes teams that begin mid-way through his experience period. Depending on the years you use, you may exclude other teams.  If you are not familiar with baseball history, you may follow this candidate’s choice of teams.

Illustration: A team which begins in 20X1 has no past years in 20X1.  In 20X2, it has only one past year.  If your regression model uses two past years, this team doesn’t have the data.  From 20X3 through 20X6, this team may improve rapidly, following a different pattern than the older (existing) teams.]

I posted the winning percentages for the remaining twenty teams on the "data for correlation" worksheet (block A1:K24 for the NL and block AA1:AJ24 for the AL).  If all teams were included in every year, each league-wide average winning percentage in each year would be 0.500.  But since I excluded some teams, I had to adjust each team's winning percentage from each year so that the league-wide average in each year was 0.500.  This was needed in order to make more valid assumptions about how each year's results for a team is used to predict the next year's results.  For example, eliminating the Montreal and San Diego franchises in 1969 (each of those team's inaugural years), caused the league-wide average winning percentage of the remaining teams to be 0.536.  Presumably, the other ten teams beat up on those two and to the extent that those two teams improved in 1970, which they did, the other teams' winning percentages, on average, were lower in 1970.  

To smooth over this effect, I created a sort of "off-balance" factor.  In continuing with the 1969 NL example, I multiplied each team's winning percentage by (0.500 / 0.536) so that the league-wide average for the 10 teams in the analysis would be 0.500.  This was done for all years in both leagues in the blocks to the right of each block of raw data on the same worksheet (blocks of cells labeled "NL-normalized" and "AL-normalized").
[NEAS: If you exclude teams in the experience period, you should rebalance all years to a 50% won-loss record.  If you do not rebalance, the parameters change over the years.  This distorts the ordinary least squares estimators and the hypothesis testing.

Illustration: Suppose a sport has 20 teams in 20X0 and 10 new teams join in 20X1.  Your student project uses only the 20 existing teams for 20X0 through 20X9.

~
In 20X0, these 20 teams have an average won-loss record of 50%.

~
In 20X1, the new teams win (on average) 30% of their games and the existing teams win (on average) 60% of their games.

~
By 20X9, the difference between the new and existing teams is no longer material, and the existing teams win (on average) 50% of their games.  Assume the change in the expected won-loss record is linear from 20X1 through 20X9.

To see the effect on the regression coefficients, suppose that past years have no predictive value for the current year.  

~
In 20X0, all the β coefficients are zero, and the α coefficient is 50%.

~
In 20X1, all the β coefficients are zero, and the α coefficient is 60%.

~
In 20X2, all the β coefficients are zero, and the α coefficient is 59%.

The change in the α coefficient over the years violates the assumptions of classical regression analysis.

If the past year has perfect predictive power among existing teams (but does not adjust for the maturing of the new teams), α = 0 each year.

~
In 20X0, β1 = 1.000 

~
In 20X1, β1 = 1.200 

~
In 20X2, β1 = 0.980 

Classical regression analysis assumes the true regression coefficients are the same each year.  If they change from year to year, the hypothesis testing is not accurate.

The textbook does not cover rebalancing, and not all candidates are familiar with it.  We do not grade the student project adversely if you do not rebalance, so do not worry about excluding teams.  But be aware that if you do not rebalance, your ordinary least squares estimators are biased, and your F test may incorrectly reject the null hypothesis.]

CORRELATIONS AND CORRELOGRAMS

Below the blocks of each league's "normalized" data, I calculated correlations of different lags for both leagues, separately.  For example, in cell R39, the lag is 3 and the "year-ending" is 1973.  By this I meant that all 10 NL teams' winning-percentages in 1973 were compared with their corresponding percentages from 3 years prior (1970).  I carried this out through lags of 10 and averaged the correlations for each lag.  This was done for both leagues.

The results are summarized graphically in the worksheet labeled "correlograms."  A few observations:

· NL correlations are somewhat stronger than those of the AL.

· Correlations in the later years in the grid (going down the column for each lag) are slightly weaker than earlier years - more so for the AL.

· The correlations associated with lags of 9 and 10 are unusually strong in the AL.  Considering how low the correlations are with lags of 7 and 8, this is probably just a coincidence.

· Neither set of correlations is as strong as those in Mahler's paper.

All of these could be due to expansion (there was more of it in the AL during the years in this analysis), the advent of free agency or any number of other factors.  Nevertheless, I believe that the average correlations for the first few lags show that we still have a strong case for using a regression model, and I believe that though the more recent years within each lag seem a little less predictive, they are acceptable for the regression analysis.

 SEQ CHAPTER \h \r 1[NEAS: The candidate compares his correlations with those in the original paper.  He suggests that the lower correlations in his analysis reflect the expansion of the Leagues or the greater freedom of players to move between teams.  Both changes decrease the predictive power of past won-loss records.

Suggestion for student projects: You can compare the regression equations for two sets of years for your student project.  For baseball, you might use before and after 1960/61. Various other dividing points can be used in baseball and the other sports.

Use the following framework:

~
Use teams that exist in both time periods.  To compare the regression equations in two time periods with some teams excluded, you should rebalance the overall won-loss records to 50% for each year.  If you don’t rebalance, your F test is biased, and you may reject the null hypothesis when you should not reject it.

~
To avoid extra work, choose a subset of teams.  For baseball, you might use either the American League or the National League.  You don’t need to spend time compiling the data for both Leagues for the student project.  You can even use four teams from one League to further save time compiling the data, but be sure to rebalance the won-loss records in all years.

~
Avoid comparisons that are distorted by other influences.  Don’t use teams that all have high won-loss records in one time period but low won-loss records in the other.

~
Form the optimal regression equation for each time period.  Choose a common format, such as two past years or three past years.  Don’t use two past years for one time period and three past years for the other time period.

~
Don’t use extra years that are not significant. If the optimal regression equations use one past year for both time periods, use one past year for the F test.  If you use five past years for the F text, the high multicollinearity distorts the hypothesis testing.

~
Use the F statistic to see if the same equation is appropriate for both periods.

~
For the National League vs the American League, or for a random selection of two groups of teams in the same years, we expect the same regression equation.  For years before and after 1960/61, we expect different optimal regression equations.

~
If you know baseball history, and you get different optimal regression equations, see if the change is what you expect.  You may get a different number of years and different slope coefficients.

Illustration: Suppose teams play ten games a year and the optimal regression equation has four past years with ß’s of 20%, 15%, 10%, and 5%.  If the season is changed to forty games a year, the optimal regression equation may have one past year with a β of 60%.  The number of years decreases and the new β of 60% is more than 20% + 15% + 10% + 5%.  Your write-up may comment on the meaning of these differences.

Illustration: Suppose the starting roster has five players, the worst teams get the earlier draft picks, and the optimal regression equation has two past years with ß’s of 20% and 10%.  If the draft rules are changed so the teams get random picks, the optimal regression equation may have four past years with ß’s of 20%, 15%, 10%, and 5%.  The number of years and the ß’s increase.  You may comment on the meaning of these differences.]

REGRESSIONS

Given the reasonably strong correlations observed, I prepared the data on which to run regression analyses ("Data for NL reg" and "Data for AL reg").  The general form of the theoretical regressions is:






    n

Winning Percentage of Year Y = (Winning Percentage of Year Y- i) + 





 i = 1 


I first analyzed the NL data.

To get a feel for how many prior years will ultimately end up in the optimal NL equation, I ran the regression comparing the winning percentages with the corresponding ones for 10 prior years.   The results are on the sheet labeled "NLReg10."  Note that for all the regressions I ran, the coefficient for the Year Y-1 (if the percentage in Year Y is the value we're fitting, the prior year is Year Y-1) always appears at the bottom, the coefficient for Year Y-2 appears second from the bottom, etc.  One can see that beyond the first three years, the coefficients are either negative or very small, and the p-values of their respective t-statistics are high.  This led me to believe that using approximately three prior years would be best.

[NEAS: The candidate begins with a regression using ten past years. This is preparatory analysis, like the correlations among years.  For all years after the first three, he finds small or negative regression coefficients with high p values.  The statistical analysis uses formal tests, but he expects to use a maximum of three past years.

Take care: If the won-loss records are a random walk with low stochasticity and no drift, the optimal regression equation uses one past year but the correlations may be high for all ten years.

The regression with ten years shows a common error that people often make. The negative coefficients reflect the variance of the ordinary least squares estimators.  The correlation from year to year is high, so the independent variables are correlated.  Past year 5 is correlated with past years 2, 3, 4, 6, 7, and 8.  The expected value of the regression coefficient is low and its variance is high, so the estimate may be positive or negative.

Take care: If the explanatory variables are highly correlated, and the true regression coefficients are low, and particularly if the values are not widely dispersed (e.g., all the won-loss records lie between 45% and 55%), the regression coefficients are random.]

I then ran regressions involving 1, 2, 3, 4 and 5 prior years (see sheets labeled "NLreg1," "NLreg2," "NLreg3," "NLreg4" and "NLreg5" respectively).  I summarized the important statistics for all of these on the sheet labeled "NL Reg Sum."  Note that I changed the order of the coefficients to make the exhibit more intuitive and hopefully more readable.  The parameter labels are estimates of those in the equation above.

The F-statistics, in this context, help determine whether or not the various relationships with prior years are indicative of present or future years.  The null hypothesis is that no years are related, that all the coefficients are zero and that the regression is merely a horizontal line.  The p-values of the F-statistics tell us how likely we are to reject the null hypothesis when it is true.  The smaller the p-values, the more confident we can be in rejecting the null hypothesis.  Clearly from these p-values, we can reject the null hypothesis outright and conclude that prior years certainly have some predictive power, or at least some subsets of them do, and that using them in regression models can yield forecasts that are at least somewhat valid and potentially powerful.

I chose not to compare unadjusted R2 statistics since they may increase simply because I added more variables and not necessarily because those additional variables were predictive.  Instead I compared adjusted R2 statistics since these aren't sensitive to the number of variables.  As expected, using three prior years gives the highest adjusted R2.  Adding a fourth year would’ve resulted in a lower adjusted R2, and besides the coefficient 4 was negative and statistically insignificant.

We also need to determine whether each individual parameter is significantly different from zero.  In this context, analyzing the t-statistics and their p-values is useful.  The null hypothesis for each estimated parameter is that it's not significantly different from zero.  The p-value of this statistic tells us the probability of rejecting the null hypothesis when it is true.  The lower the p-value, the more confident we can be in rejecting the null hypothesis (implying that the parameter is significantly different from zero and perhaps should be used in the analysis).  I've used somewhat loose tolerances, and have rejected the null hypothesis whenever the p-value of the t-statistic was below 30%, as long as the estimate itself was not negative or very small.  

[NEAS: The candidate correctly uses a high p value (30%) to reject additional past years.  Think of a three-pronged choice.

~
If the p value is more than 30%, the additional year doesn’t help.

~
If the p value is less than 10%, the additional year helps.

~
If the p value is between 10% and 30%, the additional year might help.  We use other tests, such as the adjusted R2, to decide whether to use the additional year.]

I've considered the sign and magnitude of each of the coefficients, along with the p-values of their t-statistics.  Small coefficients aren't worth the additional concern, and negative coefficients are counterintuitive for this project.  Any variables associated with data further in the past than ones with small, negative and/or insignificant coefficient estimates were ignored – especially for longer lags.

In consideration of all of the above, I concluded that the optimal regression for NL winning percentages is the one using three prior years (highlighted in yellow).

[NEAS: The candidate has a careful analysis of the adjusted R2 and the significance of the β parameters for each regression equation.  He does not compare the unadjusted R2 of each regression equation, since they are distorted by the changing degrees of freedom.

In your student project, you may also comment on the effects of multicollinearity.  The time series course uses the partial autocorrelation function to measure the independent effect of the additional year; this technique is not required for the regression analysis student project.  When comparing the regression equations for one past year vs two past years, three items affect the t values for the β of the first past year.  For the equation with two past years

~
The estimated s2 for the regression equation decreases.

~
The β for the first past year decreases.

~
The variance of the β for the first past year increases.

The multicollinearity of the two past years affects each item in the list above.]

I began my analysis for the AL in the same way (see sheet "ALreg10").  Oddly enough, the estimates of 3 are greater and more significant than those of ​2.  I then ran regressions involving 1, 2, 3, 4 and 5 prior years (see sheets labeled "ALreg1," "ALreg2," "ALreg3," "ALreg4" and "ALreg5" respectively).  I summarized the important statistics for all of these on the sheet labeled "AL Reg Sum."  The p-values of the F-statistics in all cases were extremely low, implying that there is certainly some relationship of winning percentages to those in prior years.  One again, using three prior years yielded the best adjusted R2.  Though, as expected based on the correlogram, the model wasn't as powerful as its NL counterpart (its adjusted R2 was lower).  The intercept estimate and ​1 are highly significant in all cases.  But, ​2 was much less significant than I expected - especially when 3 was also included in the regression.  I was willing to reject the null hypothesis for 3, but was certainly not ready to do the same for 2​.  (Incidentally, the estimated coefficients for variables associated with longer lags were larger than ideal and slightly more significant than usual because of the unusually high correlations with data from 9 and 10 years ago.  Because estimated coefficients with shorter lags were small, negative or insignificant, I chose to disregard those estimates – including those for ​9 and 10.)

I tried to improve on this equation (AL, using three prior years) in a number of ways.  I first realized that the points included in the regression analysis spanned only from 1972-1983.  I revisited the "Data for Correlation" sheet and obtained average correlations across only these years.  Sure enough, there isn't much of a difference between the correlations involving lags 2 and 3 for only these years.  I also calculated coefficients of variation, and the one for lag 3 was much lower than the one for lag 2.  Seeing that there was much less variation for lag 3 in that subset of the data, I then understood why the estimated coefficient for 3 was greater and more significant than ​2 whenever they appeared together.  

Based on the p-value for the ​2 ​estimate, I concluded that it was not significantly different from zero.  So, I adjusted the data on the sheet "Data for AL reg" and re-ran the regression without the "year - 2" variable ("ALReg3-new-elimB2").  I couldn't just ignore the insignificant ​2 because the regression equation still must have a mean forecasted value of 0.500.  I also realized that since I was using only three prior years, I can include more points, going as far back as using the 1965 winning percentages as the earliest y-values ("ALReg3-190").  

The results of these two regressions (one eliminating 2​ altogether and the one using more data) are also summarized on "AL Reg Sum."  Considering the adjusted R2 statistics, the magnitude of the estimated coefficients, along with the p-values of their t-statistics, I concluded that the one that eliminated 2​ was optimal (highlighted).

I also went back and re-ran the NL regression with three prior years using more data (results are on "NLReg3-190").  I ran into a similar situation with this regression as in ALReg3 - 2 ​​was smaller and less significant than I decided not to explore any further since, per the instructions, 120 points was more than enough for the analysis, and I was reasonably satisfied with the regression I already chose as optimal.  I suppose all these variations are due to the fact that while there are significant correlations of winning percentages with those of prior years, these correlations aren't extremely strong (adjusted R2 is high enough, but not very high) and whatever we consider optimal still has a considerable amount of random variation that is not explained by the regression (ESS).

[NEAS: The regression analysis does not always give the expected results.  For the American League, the β for the third past year is more significant than the β for the second past year.  When you have a counter-intuitive result, do the following:

~
Check if you have a data error.  You may have mistakenly placed the won-loss records for the second and third past years in the wrong columns.  The candidate checks his work and finds that this anomaly repeats in various places.

~
Check if the anomaly is restricted to certain data points, or if one data point is an outlier that distorts the regression equation.  The textbook emphasizes this issue in the section on studentized residuals.  For the student project, checking all the outliers takes too much time. For actual regression analyses, this checking is essential.

Illustration: Suppose we form a regression equation from the experience of a single team, using experience from 20X0 through 20X9.  The team has won-loss records of about 50% in all years except 20X4 and 20X9, when it won 70% of its games.

~
Without these two outliers, the optimal regression equation may use two past years.

~
With these two outliers, the optimal regression equation may have a high β coefficient for the fifth past year.

The candidate correctly notes that one should check more years to see if this anomalous results occurs elsewhere.  For your student project, follow the same practice:

When good statistical method requires extra work, note the problem and the method of checking the result in your write-up.  We do not expect you to check all anomalies.

Illustration: For the illustration directly above, using more years of data reduces the β coefficient for the fifth past year.]

F TEST

For my project, I tested whether the regression models for the two Leagues are significantly different.  The null hypothesis is that they are not (i.e. that the true regression parameters are the same for both Leagues). 

I set up a Chow test to see whether we can use just one regression equation to forecast winning percentages in both Leagues.  I first pasted the 120 points used in each of the separate regressions into one sheet ("Data for comb reg").  I then ran one regression with both Leagues combined, assuming that the prior three years would all have statistically significant coefficients (even though 2 wasn’t significant in the AL-only regression). 
[NEAS: This candidate uses two separate equations and adds the error sums of squares for the F test.  Alternatively, you may use dummy variables.  The F statistic is the same in both methods.]

The results are on sheet "Combined Reg."  The p-value of the F-statistic is extremely small, as expected, and the adjusted R2 statistic is fairly solid.  The estimated parameters are close to the magnitude that we'd expect, relative to one another.  None are trivial or negative.  Each coefficient is significant, based on the p-value of the t-statistics – especially compared with the liberal tolerances I set earlier.  The combined regression equation has an expected forecasted value of 0.500 as we'd hoped for and is estimated to be:

Winning % of Year Y = 0.165219 + 0.414397*Winning % of Year (Y - 1) +


   0.132695*Winning % of Year (Y - 2) + 0.122470*Winning % of Year (Y - 3).

[NEAS: The fitted regression equation will differ for the two data sets.  This candidate uses two explanatory variables for the American League and three explanatory variables for the National League, and the estimated regression coefficients differ by League.  He correctly notes that the differences could stem from random fluctuations.

The project template for sports won-loss records is particularly good, since the estimated regression coefficients may vary because of the multicollinearity among the independent variables. We can not just look at the ordinary least squares estimators and say the equations differ.  We look instead at their ability to explain the variance of the dependent variable.  The candidate notes the differences between the Leagues in the fitted equations, and then uses the F test to show that the differences may just be random fluctuation.

Significance testing relates to a hypothesis.  Some candidates wonder: “If the ordinary least squares estimates in each equation are significant and the estimates differ, how can the F test say the equations are the same?  Isn’t this contradictory?”

Answer: The significance testing in each regression equation does not mean the estimators are the true regression coefficients.  It means the true regression coefficients are not zero. The F test examines if the coefficients in the two equations might be the same.  It does not say the coefficients are the same or the equations are the same.  It says that we should not reject the hypothesis that the coefficients are the same.]

We use a Chow test to see whether this equation can be used for both leagues instead of having to use a separate one for each.  I calculated the F-statistic using equation 5.25 in the text (p. 134):

Fk, N+M-2k​  = [ (ESSR - ESSUR) / k ] / [ESSUR / (N + M - 2k) ]

The restricted equation is the combined regression (above) and the unrestricted equations are the two separate ones.  The error sum of squares is given in the add-in regression outputs.  To obtain ESS​UR, I simply found the sum of the ESS from each League's separate regressions involving three prior years (on "NLReg3" and "ALReg3").  For the AL, this wasn't the equation I considered optimal because ​2 wasn't significantly different from zero, but the difference between it and the one eliminating ​2 is very slight (very similar ESS and only one degree of freedom away, which doesn't matter when you have this many points).  The degrees of freedom in the numerator for this F-statistic is four, since we’re estimating four parameters.  The degrees of freedom in the denominator is the total number of data points (120 + 120 = 240) minus the two sets of four parameters estimated in the unrestricted equations (240 – 2*4 = 232).
[NEAS: The focus on this project template is on the F test for comparing two sets of data.  You can choose several types of comparisons.

~
Comparing similar data sets: We don’t expect different regression equations for the American League and the National League, but random fluctuations may lead to different ordinary least squares estimators or explanatory variables (past years). We use a stringent significance level, such as 5% or 2.5%. Unless we have strong evidence that the two Leagues differ, we presume they are the same.

~
Comparing different data sets: We expect different sports to have different regression equations.  We use a more lenient significance level, such as 10% or 20%.  Unless the data show the two sports are similar, we presume they are different.

~
Comparing two segments that differ in some way, such as baseball teams before and after the 1961 expansion.  The sport is the same, but the greater number of games and teams might affect the regression equation.

The statistical work is in the Excel spread-sheet.  To grade the student project, we look first at the write-up to see if the candidate understands the concepts.  To expedite the review of your project, you should state the following in the write-up:

~
The null hypothesis, such as “the Leagues, divisions, conferences, time periods, or other segments have the same regression equation. The differences in the ordinary least squares estimators stem from random fluctuation.”

~
The restricted regression equation, which assumes the same regression coefficients.

~
The unrestricted regression equation, which may use dummy variables to distinguish the two sets of data or may use separate equations and add the error sums of squares.  State which method you use and show the equation(s).

~
The formula for the F test.  You have several formulas, using ESS, RSS, or R2, which are algebraically equivalent.

~
The degrees of freedom in the numerator and the denominator.

~
The critical value for the chosen significance level and degrees of freedom.  A statistical package gives you the p value for your test.  If you use the table in the textbook, you have little choice for the significance level and you must interpolate among degrees of freedom.  The table may not show critical values for the significance level you would like to use.  Explain what the F test implies for the significance level in the table.  State whether the critical value would be higher or lower for the significance level you prefer.]

I listed the inputs to the above formula on the sheet "Chow test."  My comments next to them are self-explanatory and I've supplemented them with the above two paragraphs.  The p-value of the F-test is very large, which means we can't reject the null hypothesis.  This implies that we can combine the data and use the one regression equation above to forecast winning percentages in both leagues.  Each predicted value will be based on that particular team's performance over the prior three years.

