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A-Rated Utility Bonds, 1970-1998

[NEAS: The candidate examines interest rates on municipal bonds from 1970 through 1998. He properly examines the graph and divides the time series into three time periods, based on the means, trends, and volatility of the interest rates.  He does not just use the interest rate eras on the NEAS web site; he carefully examines whether the time series justifies the division.

The three interest rate eras affecting Treasury yields and corporate bonds also affect municipal bonds. The NEAS faculty comments also discuss the different tax eras that affect municipal bond spreads (separate posting).
Some candidates try to model the full time series by taking second differences.  The results are spurious, and do not forecast well.  The original time series need not be stationary, but it must by homogeneous.  It reflects a single process, not an amalgam of two processes in different periods.

Choosing eras is not easy. Use three rules:

(1) A distinct change in trend indicates a different ARIMA process. If interest rates first increase and then decrease, we divide the time series into two eras to fit ARIMA processes.  When you examine the trends, consider several items:

~
Seasonality and cycles are not trends. The expected daily temperature rises in the Spring and declines in the Autumn. This is seasonality, not a trend.  GDP rises in prosperous years and declines in recessions; this is a cycle, not a trend.  We adjust for seasonality and cycles to see the trends.

~
Stochasticity obscures trends. Average claim severities by month for a small insurer have so much stochasticity that the inflationary trend is hard to see.  Simple moving averages help you quantify the trends.

~
A continuous change in a trend may require taking logarithms, not separating the time series into eras.

(2) A change in volatility indicates a different ARIMA process.  We see only the realization of the time series, not the underlying process, so it is not easy to discern if a higher standard deviation is higher volatility or a random fluctuation.  For interest rates, the higher volatility in the second time period is clear.  A high dispersion in daily temperatures one year is random fluctuation, not a change in volatility.

(3) A change in the mean indicates a different ARIMA process. Changes in the mean are most often caused by exogenous factors, such as marginal tax rates.  Two examples are

~
The 1986 reduction of the corporate tax rate narrowed the municipal bond spread.  Actual ARIMA modeling of municipal bond yields must distinguish tax eras   (You are not expected to know tax law for the student project.  We point out exogenous factors to help you understand why the means differ by time period.)

~
A change from a high and progressive income tax to a low and flat income tax raises employment and GDP.  This type of change occurred (to different degrees) in the U.S., Ireland, Eastern Europe, and Asia.  The change is relatively rapid, though it takes five to ten years for the change in GDP growth to be clear.]

Introduction


A bond is essentially a loan at a specified interest rate that an investor makes to the bonds’ issuer. The investor receives regular interest payments on the loan until the bond matures or is called, at which point the issuer repays the principal. Utility bonds are simply bonds issued to finance the construction of public utility services. The interest rate paid on these utility bonds varies over time, creating a time series. In this project, SAS and Excel are used to analyze the interest rate on A-rated utility bonds for the period of January 1970 to September 1998. The goal of the project is to construct an ARIMA process to model the interest rates during this time period. 
Analysis

First of all, it was determined that the time series was stochastic and not a by-product of clear and easily accessible causes. Thus, it was decided that an ARIMA(p,d,q) model would be appropriate. There are many other models that could have been used, but due to the fact that there was no other information available on the time series, ARIMA was used. 

Next, the time series itself was examined for stationarity and changes in regime by examining all the available interest rate data, from January 1970 to September 1998. 
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The overall mean of the series is 10.00, and the standard deviation is 2.49. It can be seen from the figure that the original values of the time series do not seem to fluctuate around a constant mean, and hence it would seem that these values are non-stationary. 

In addition, the time series appears to be made up of three distinct time periods where different characteristics are exhibited. In the first era, from January 1970 to August 1979, the rates first fall from 9% to below 8%, then rise to almost 12%. Next, the rates decrease to around 8% before ending up at 10%. The series appears to trend upward overall, and exhibits relatively constant volatility. The second distinct period, from September 1979 to November 1982, is characterized by more variability than the other periods. Rates rose from 10% to 15%, quickly fell to 12%, increased to over 18%, and then dropped to about 13%, all in a span of 39 months. The final era appears from December 1982 until September 1998. The series exhibits a negative trend overall, as rates fell from about 13% to 7% over the time period. Also, there appears to be more volatility early in the series and less volatility after about 1988.

To check if the original time series is non-stationary, as hypothesized, a correlogram was constructed using SAS.
	Autocorrelations
	
	
	

	Lag
	Covariance
	Correlation
	
	Std Error

	0
	6.184411
	1
	|                    |********************
	0

	1
	6.104554
	0.98709
	|                  . |********************
	0.053838

	2
	5.982762
	0.96739
	|                .   |******************* 
	0.092449

	3
	5.858288
	0.94727
	|               .    |******************* 
	0.118204

	4
	5.746673
	0.92922
	|              .     |******************* 
	0.13847

	5
	5.639477
	0.91189
	|              .     |******************  
	0.155497

	6
	5.518993
	0.8924
	|             .      |******************  
	0.170294

	7
	5.396824
	0.87265
	|             .      |*****************   
	0.183348

	8
	5.291496
	0.85562
	|            .       |*****************   
	0.195016

	9
	5.180586
	0.83768
	|            .       |*****************   
	0.205609

	10
	5.052096
	0.81691
	|           .        |****************    
	0.215275

	11
	4.902892
	0.79278
	|           .        |****************    
	0.22408

	12
	4.738243
	0.76616
	|           .        |***************     
	0.232067

	13
	4.568549
	0.73872
	|          .         |***************     
	0.239287

	14
	4.408375
	0.71282
	|          .         |**************      
	0.245808

	15
	4.255824
	0.68815
	|          .         |**************      
	0.251729

	16
	4.128561
	0.66758
	|          .         |*************       
	0.257124

	17
	4.009979
	0.6484
	|          .         |*************       
	0.262099

	18
	3.88273
	0.62783
	|         .          |*************       
	0.266708

	19
	3.753248
	0.60689
	|         .          |************        
	0.270958

	20
	3.627665
	0.58658
	|         .          |************        
	0.27487

	21
	3.520932
	0.56932
	|         .          |***********         
	0.278475

	22
	3.419831
	0.55298
	|         .          |***********         
	0.281828

	23
	3.310507
	0.5353
	|         .          |***********         
	0.284956

	24
	3.199009
	0.51727
	|        .           |********** .        
	0.287856



We clearly see that the correlations die down very slowly. Thus, the autocorrelation plot indicates that the series in not stationary, as expected. 

There are four common reasons for a time series to be non-stationary. These include: a change in the mean, variance, or drift due to exogenous factors, seasonality or cycles, linear trend, and exponential trend. 

We have already seen that the time series exhibits different characteristics at certain points in time. The differences seen in the periods 1970-1979, 1979-1982, and 1982-1998, could be due to exogenous factors. Specifically, the dissimilarities could be related to the change in Federal Reserve Board policy in the 1970’s and early 1980’s. During this time, the United States first tried to use inflation to control unemployment, and later tried to restrain inflation. The changes in monetary philosophy at this time likely contributed to the variations seen in the time series.

To check for seasonality, the average of each month in the series was calculated and graphed. 
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The utility bond interest rates appear to be slightly higher in April through October, with a maximum in October. The seasonality effect appears to be small, as the difference between the highest average interest rate and the lowest is just 0.25%. While some seasonality can be seen, it seems to have a weak effect on the interest rates and will be ignored for the purposes of this project. 
[NEAS: The candidate examines monthly averages. Municipal bonds have long maturities (20 or 30 years), so we expect no seasonality, as the candidate confirms.]


In addition to exogenous factors and weak seasonality, linear or exponential trend could also have contributed to the non-stationarity of the time series. To remove any seasonality and dampen the stochasticity, we used a 12-month moving average of the data. This plot was created in order to see drifts in the time series more clearly and to help confirm the existence of distinct eras. 

[image: image3.emf]12-Month Moving Average of Interest Rates
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The presumptions made thus far regarding trend and eras seem to be confirmed by the moving average plot. The series generally trends upward in the beginning, exhibits increased volatility during a transition phase in the middle, and trends downward at the end. However, it is difficult to tell from the plot if the various trends are linear or exponential. 

With further support that the time series exhibits different characteristics during certain time periods, we examine each era separately for trend. There are two eras that will be studied, January 1970 to August 1979 and December 1982 to September 1998. The transition period, September 1979 to November 1982, will not be examined further due to its high volatility and small sample size. 
[NEAS: The candidate decides to model the first and third time periods.  He correctly notes that the high volatility and short duration of the second time period makes it hard to fit an ARIMA process.  For your student project, avoid highly volatile time series.]


To aid in trend specification, a plot of the time series and the logarithms of the time series for the first era (1/70 - 8/79) were created. A linear trend appears as a straight line in the plot of the original series. When logarithms of the time series form a straight line, an exponential trend is more likely.

[image: image4.emf]A-Rated Utility Bond Interest Rates, 1970-1979

0

2

4

6

8

10

12

14

Jan-70 Jan-71 Jan-72 Jan-73 Jan-74 Jan-75 Jan-76 Jan-77 Jan-78 Jan-79

Date

Interest Rate



The mean of this section of data is 8.97 with a standard deviation of 1.04. The time series does not appear to be stationary but it is difficult to tell if the portion exhibits linear or exponential trend simply by looking at the plot. Looking closely, the data seem to exhibit more of a linear trend, which makes sense intuitively. To research further, a plot of the logarithms of the time series is examined.
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The logarithms of the time series values seem to form a straight line to some extent. However, when a linear trend line was fit to the data using Excel, the R-squared value was just 0.19, indicating that the trend of the original series should not be considered exponential. The evidence seems to support a linear trend in this time period.
[NEAS: To examine the trends, the candidate correctly takes 12 month moving averages.  It is hard to distinguish between linear and exponential trends, and the candidate takes logarithms and computes the R2 of the resulting regression equation on time.  The low R2 in the first time period leads him to choose a linear trend.  This is a reasonable conclusion.  The price level shows an exponential trend, but a trend in interest rates or inflation rates is not exponential.  We have no a priori reason to assume the trend is linear, but our only options (for this course) are linear and exponential trends.]


The process used above was then repeated to examine the second time period (1982-1998). A plot of the time series over the specified interval is shown below.

[image: image6.emf]A-Rated Utility Bond Interest Rates, 1982-1998
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This section of the time series shows some evidence of an exponential trend. Once the interest rates stop climbing in June of 1984, they decrease at a higher rate than later in the series. To determine if the trend is truly exponential, a plot of the logarithms of the rates was formed. 
[image: image7.emf]Logarithm of Interest Rates, 1982-1998
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The logarithms of the rates appear to lie on a relatively straight line in this case. In fact, fitting a linear trend line to the data resulted in an R-square value of 0.83. This result confirms the belief that the original series in this period exhibited an exponential trend. 

The next steps in this analysis involve making each time series stationary, checking for white noise, and fitting ARIMA models to the data. After models have been specified, their validity needs to be tested. It was determined that the validity of the models would be checked by forecasting a five-observation holdout sample in each era. 


The two time periods will be considered separately in the analysis below. For the first time series, interest rates from January 1970 until March 1979 will be used to specify the model. Rates from April 1979 until August 1979 will be used as a holdout sample to test the validity of the model. Since seasonality was not found to be a major source of concern, the five month holdout sample should not pose any problems. The second time series will be modeled using rates from December 1982 until April 1998. The holdout sample will include the remaining available rates, from May 1998 to September 1998.
Utility Bond Interest Rates, 1970-1979


The first step in analyzing the time series for the period of January 1970 to March 1979 is to determine for sure if the series is stationary. The plot of rates shown above led us to believe that the time series was not stationary, but a correlogram is needed to verify this assumption. 
	                                       Autocorrelations
	

	
	
	
	
	

	Lag
	Covariance
	Correlation
	
	Std Error

	
	
	
	
	

	0
	1.089322
	1
	|                    |********************
	0

	1
	1.041976
	0.95654
	|                .   |******************* 
	0.094916

	2
	0.985646
	0.90483
	|              .     |******************   
	0.159671

	3
	0.919647
	0.84424
	|            .       |*****************    
	0.200615

	4
	0.853398
	0.78342
	|           .        |****************      
	0.230409

	5
	0.792229
	0.72727
	|          .         |***************       
	0.253273

	6
	0.734604
	0.67437
	|         .          |*************          
	0.271435

	7
	0.683888
	0.62781
	|         .          |*************          
	0.286131

	8
	0.639878
	0.58741
	|        .           |************           
	0.298283

	9
	0.590774
	0.54233
	|        .           |***********.           
	0.308529

	10
	0.534094
	0.4903
	|       .            |**********  .          
	0.317001

	11
	0.473062
	0.43427
	|       .            |*********   .          
	0.323761

	12
	0.402262
	0.36928
	|       .            |*******     .           
	0.328967

	13
	0.32112
	0.29479
	|       .            |******      .           
	0.33268

	14
	0.236519
	0.21713
	|       .            |****        .            
	0.335025

	15
	0.140263
	0.12876
	|       .            |***         .            
	0.336291

	16
	0.057581
	0.05286
	|       .            |*           .             
	0.336734

	17
	-0.01975
	-0.01813
	|       .            |            .             
	0.336809

	18
	-0.09733
	-0.08935
	|       .          **|            .            
	0.336818

	19
	-0.15893
	-0.1459
	|       .         ***|            .       
	0.337031

	20
	-0.20723
	-0.19024
	|      .         ****|             .      
	0.3376

	21
	-0.24757
	-0.22727
	|      .        *****|             .      
	0.338564

	22
	-0.28773
	-0.26413
	|      .        *****|             .      
	0.339936

	23
	-0.32905
	-0.30207
	|      .       ******|             .      
	0.34178

	24
	-0.36314
	-0.33336
	|      .      *******|             .      
	0.344177



The autocorrelations die down slowly, indicating that the time series is not stationary. The analysis above showed that the time series exhibits a linear trend, so this result is not unexpected. With a linear trend, first differences need to be taken in order to form a stationary time series. A plot of the first differences for this time series follows.

[image: image8.emf]First Differences of Interest Rates, 1970-1979
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The mean of the first differences in this era is 0.009 and the standard deviation is 0.281. The time series appears to fluctuate around the mean, indicating that the series is stationary. To verify this assumption, the correlogram was examined.
	
	
	
	Autocorrelations
	

	
	
	
	
	

	Lag
	Covariance
	Correlation
	
	Std Error

	
	
	
	
	

	0
	0.079319
	1
	|                    |********************
	0

	1
	0.01204
	0.15179
	|                .   |***.                
	0.095346

	2
	0.010885
	0.13723
	|                .   |***.                
	0.097518

	3
	0.001566
	0.01974
	|                .   |   .                
	0.099258

	4
	-0.0045382
	-0.05721
	|                .  *|   .                
	0.099294

	5
	-0.0011559
	-0.01457
	|                .   |   .                
	0.099593

	6
	-0.0029617
	-0.03734
	|                .  *|   .                
	0.099613

	7
	-0.0083731
	-0.10556
	|                . **|   .                
	0.09974

	8
	0.00002559
	0.00032
	|                .   |   .                
	0.10075

	9
	0.0099777
	0.12579
	|                .   |***.                
	0.10075

	10
	0.0064079
	0.08079
	|                .   |** .                
	0.102168

	11
	0.014742
	0.18586
	|                .   |****                
	0.102747

	12
	0.013909
	0.17536
	|                .   |****                
	0.10576

	13
	0.0031265
	0.03942
	|                .   |*  .                
	0.10837

	14
	0.011322
	0.14273
	|                .   |***.                
	0.108501

	15
	-0.010482
	-0.13216
	|                .***|   .                
	0.110195

	16
	-0.0046358
	-0.05845
	|                .  *|   .                
	0.111626

	17
	0.00052948
	0.00668
	|                .   |   .                
	0.111904

	18
	-0.014537
	-0.18327
	|                ****|   .                
	0.111908

	19
	-0.013162
	-0.16594
	|               . ***|    .               
	0.114604

	20
	-0.008768
	-0.11054
	|               .  **|    .               
	0.116768

	21
	-0.0014947
	-0.01884
	|               .    |    .               
	0.117715

	22
	0.00012717
	0.0016
	|               .    |    .               
	0.117743

	23
	-0.0045789
	-0.05773
	|               .   *|    .               
	0.117743

	24
	-0.002537
	-0.03199
	|               .   *|    .               
	0.118



The correlogram of the differenced data suggests that the data is stationary, since there is a fast decline in the autocorrelation function. In fact, the autocorrelation function drops to nearly zero for lags greater than zero. In addition, the function shows small fluctuations about zero. This is an indication that the series is from a white noise process.

To investigate the possibility that the series is white noise, the Durbin-Watson statistic, Bartlett’s test, and the Ljung-Box-Pierce test were used. The Ljung-Box-Pierce test was used because it has been suggested that it yields a better fit to the asymptotic chi-square distribution than the Box-Pierce Q statistic and is easily obtained using SAS.

The Durbin-Watson statistic is a test for first-order serial correlation in the residuals of a time series regression. Specifically, it tests the null hypothesis that no serial correlation is present. A value of 2.0 for the Durbin-Watson statistic indicates that there is no serial correlation. For the differenced data in this period, the Durbin-Watson statistic applied to the residuals was found to be 2.04. Since this value is not significantly different from two, we can not reject the null hypothesis. Thus, we conclude that no serial correlation is present. This result provides additional evidence that the series is from a white noise process. 


Bartlett’s test was used to determine if particular values of the autocorrelation function are equal to zero. Bartlett showed that if a time series has been generated by a white noise process, the sample autocorrelation coefficients for lags greater than zero are distributed approximately normal. The distribution will have a mean of 0 and standard deviation 1/(T, where T is the number of observations in the sample. Given the 111 observations in this time period, the hypothesis for Bartlett’s test is that the sample autocorrelation coefficients are approximately normally distributed with mean zero and standard deviation 0.095. None of the first 24 sample autocorrelations exceed the 95% confidence interval calculated using these values. The null hypothesis that the time series is a white noise process cannot be rejected.

The Ljung-Box-Pierce test is used to accept or reject the null hypothesis that a group of standardized residual autocorrelations are all equal to zero. The test statistic for the Ljung-Box-Pierce hypothesis test is 
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 for h=1,...,H are the autocorrelations for the residuals. Under the assumption that the null hypothesis is true, Q ~ 
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 for large n. SAS was used to perform this test and the results for various lags are given below.

	
	
	Autocorrelation Check for White Noise
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	To
	Chi-
	
	Pr >
	
	
	
	
	
	

	Lag
	Square
	DF
	ChiSq
	--------------------Autocorrelations--------------------

	
	
	
	
	
	
	
	
	
	

	6
	5.37
	6
	0.4976
	0.152
	0.137
	0.02
	-0.057
	-0.015
	-0.037

	12
	17.6
	12
	0.1284
	-0.106
	0
	0.126
	0.081
	0.186
	0.175

	18
	27.63
	18
	0.0679
	0.039
	0.143
	-0.132
	-0.058
	0.007
	-0.183

	24
	33.7
	24
	0.0902
	-0.166
	-0.111
	-0.019
	0.002
	-0.058
	-0.032



The p-values are all above 0.05, meaning that we cannot reject the null hypothesis at that level. This means that, even at lag 24, the residuals have zero autocorrelations. Based on the results of these statistical tests, the time series appears to have been generated by a white noise process. 

We conclude that the differenced time series is most likely from a white noise process. Therefore, the original interest rate data can be modeled by an ARIMA(0,1,0) process. 

Since the process is white noise, there is little or no value in using a model to forecast the series. The forecast for the difference between interest rates in any two months will be zero. The forecasted and actual interest rates are shown in the table below.
	Month
	Differenced

Data Forecast
	Interest Rate 
Forecast
	Actual Interest

Rate
	Difference
(Actual-Forecast)

	April ‘79
	0
	10.27 %
	10.24%
	-0.03%

	May ‘79
	0
	10.27 %
	10.54%
	0.27%

	June ‘79
	0
	10.27 %
	10.00%
	-0.27%

	July ‘79
	0
	10.27 %
	10.03%
	-0.24%

	August ‘79
	0
	10.27 %
	9.94%
	-0.33%



The forecasted interest rates are not too poor, indicating that a white noise process for this era was probably a satisfactory choice. 
Utility Bond Interest Rates, 1982-1998

The time series of the interest rates in the period from December 1982 to April 1998 was the second to be examined. From the analysis above, we do not expect the original series to be stationary. In fact, the expectation is that an exponential trend exists in the data and that logarithms and differencing will have to be used in order to create a stationary series. To verify these beliefs, we first examine the correlogram for the original series. 
	Autocorrelations

	
	
	
	
	

	Lag
	Covariance
	Correlation
	
	Std Error

	
	
	
	
	

	0
	3.759563
	1
	|                    |********************
	0

	1
	3.678772
	0.97851
	|                 .  |********************
	0.073521

	2
	3.574825
	0.95086
	|               .    |******************* 
	0.125525

	3
	3.463249
	0.92118
	|              .     |******************  
	0.159784

	4
	3.361925
	0.89423
	|             .      |******************  
	0.186292

	5
	3.273794
	0.87079
	|            .       |*****************   
	0.208206

	6
	3.194414
	0.84968
	|           .        |*****************   
	0.22704

	7
	3.11157
	0.82764
	|          .         |*****************   
	0.243623

	8
	3.021384
	0.80365
	|          .         |****************    
	0.258375

	9
	2.922025
	0.77722
	|         .          |****************    
	0.271551

	10
	2.819611
	0.74998
	|         .          |***************     
	0.28332

	11
	2.710359
	0.72092
	|        .           |**************      
	0.293856

	12
	2.593579
	0.68986
	|        .           |**************      
	0.303265

	13
	2.483051
	0.66046
	|        .           |*************       
	0.311633

	14
	2.389872
	0.63568
	|       .            |*************       
	0.319109

	15
	2.307097
	0.61366
	|       .            |************.       
	0.325882

	16
	2.219345
	0.59032
	|       .            |************.       
	0.33207

	17
	2.1192
	0.56368
	|      .             |***********  .      
	0.337695

	18
	2.000684
	0.53216
	|      .             |***********  .      
	0.342743

	19
	1.883634
	0.50102
	|      .             |**********   .      
	0.34718

	20
	1.770052
	0.47081
	|      .             |*********    .      
	0.351067

	21
	1.6674
	0.44351
	|      .             |*********    .      
	0.354463

	22
	1.577292
	0.41954
	|      .             |********     .      
	0.35745

	23
	1.503241
	0.39984
	|      .             |********     .      
	0.360102

	24
	1.441361
	0.38339
	|      .             |********     .      
	0.362494



The correlogram indicates that the time series is not stationary. The sample autocorrelations decline very slowly, meaning that terms in the series are correlated several periods in the past. This is an indication that the series is nonstationary and that it must be transformed. Clearly, the correlogram supports our previous analysis. 

Based on the results obtained to this point, it is clear that logarithms and differences of the time series should be taken in an attempt to obtain a stationary series. A plot of the differences of the logarithms of the time series is below. 
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The mean of the transformed series in this time period is -0.003 and the standard deviation is 0.025. The data do not appear to display a trend in mean or variance. Also, the time series looks as if it fluctuates about the mean. The evidence suggests that the transformed series is stationary. To confirm, a correlogram of the transformed series must be examined.
	Autocorrelations

	
	
	
	
	

	Lag
	Covariance
	Correlation
	
	Std Error

	
	
	
	
	

	0
	0.00064352
	1
	|                    |********************
	0

	1
	0.00026481
	0.41151
	|                 .  |********            
	0.073721

	2
	9.93E-06
	0.01543
	|                 .  |  .                 
	0.085296

	3
	-0.0000238
	-0.03699
	|                 . *|  .                 
	0.085311

	4
	-0.0000242
	-0.03767
	|                 . *|  .                 
	0.085398

	5
	-0.0000523
	-0.08121
	|                 .**|  .                 
	0.085489

	6
	-0.0000246
	-0.03816
	|                 . *|  .                 
	0.085907

	7
	0.00001878
	0.02919
	|                 .  |* .                 
	0.085999

	8
	5.01E-06
	0.00779
	|                 .  |  .                 
	0.086053

	9
	-5.66E-06
	-0.00879
	|                 .  |  .                 
	0.086057

	10
	0.00006176
	0.09598
	|                 .  |**.                 
	0.086061

	11
	0.00004646
	0.0722
	|                 .  |* .                 
	0.086641

	12
	-0.0000502
	-0.07807
	|                 .**|  .                 
	0.086968

	13
	-0.0001295
	-0.20118
	|                ****|  .                 
	0.087348

	14
	-0.0001507
	-0.23421
	|               *****|   .                
	0.089831

	15
	-0.0000864
	-0.13433
	|                .***|   .                
	0.09309

	16
	-0.0000198
	-0.03084
	|                .  *|   .                
	0.094138

	17
	9.13E-06
	0.01418
	|                .   |   .                
	0.094193

	18
	-0.000027
	-0.04196
	|                .  *|   .                
	0.094204

	19
	-0.0000332
	-0.05166
	|                .  *|   .                
	0.094306

	20
	-2.98E-07
	-0.00046
	|                .   |   .                
	0.09446

	21
	-0.0000412
	-0.06397
	|                .  *|   .                
	0.09446

	22
	-0.0000752
	-0.11686
	|                . **|   .                
	0.094695

	23
	-0.0000177
	-0.02752
	|                .  *|   .                
	0.095475

	24
	0.00002481
	0.03855
	|                .   |*  .                
	0.095518



The sample autocorrelations visibly cut off after a lag of one. This is an indication that our assumption was correct and the transformed series is indeed stationary. It also gives us an indication as to the type of ARIMA model that should be used to model the time series. The sample autocorrelation for the first lag, 0.41, is rather high and the autocorrelations after the first lag are close to zero. When a correlogram cuts off at some point, k=q, the underlying model is probably MA(q). This is true because the order of a moving average model depends on how many periods the correlation lasts between terms. In this case, we have evidence to believe that MA(1) is the best choice of models for the time series. However, it is necessary to consider the possibility that the series is from a white noise process. The Durbin-Watson statistic, Bartlett’s test, and the Ljung-Box-Pierce test were used to check for white noise.

The Durbin-Watson statistic for the lagged regression of the transformed interest rate data was found to be 1.83. Since the value is significantly different from 2, we reject the null hypothesis that no serial correlation is present. The results from the Durbin-Watson test suggest that the transformed time series is not from a white noise process. 


The next test used to determine if the series was from a white noise process was Bartlett’s test. With 185 observations in the time period, the hypothesis for Bartlett’s test is that the sample autocorrelation coefficients are approximately normally distributed with mean zero and standard deviation 0.074. Three of the first 24 sample autocorrelations exceed the 95% confidence interval calculated using these values. The number of sample autocorrelations outside the confidence interval allows for the null hypothesis of a white noise process to be rejected.

The final test used to determine if the series was from a white noise process was the Ljung-Box-Pierce test. SAS output showing the results of this test is given below.

	Autocorrelation Check for White Noise

	
	
	
	
	
	
	
	
	
	

	To
	Chi-
	
	Pr >
	
	
	
	
	
	

	Lag
	Square
	DF
	ChiSq
	-------------------------------Autocorrelations----------------------------------

	
	
	
	
	
	
	
	
	
	

	6
	33.78
	6
	<.0001
	0.412
	0.015
	-0.037
	-0.038
	-0.081
	-0.038

	12
	38.03
	12
	0.0002
	0.029
	0.008
	-0.009
	0.096
	0.072
	-0.078

	18
	61.43
	18
	<.0001
	-0.201
	-0.234
	-0.134
	-0.031
	0.014
	-0.042

	24
	66.2
	24
	<.0001
	-0.052
	0
	-0.064
	-0.117
	-0.028
	0.039



The p-values for the Ljung-Box-Pierce test are all very small. Therefore, we reject the null hypothesis that the autocorrelations are all equal to zero. The results of this test also show that the time series is not consistent with a white noise process.


The results of the three tests unanimously concur that the series in this era does not appear to be white noise. The next step, then, is to determine what type of ARIMA model best fits the time series.

We have evidence from the analysis of the correlogram above that a MA(1) model may provide a good fit for the data. To verify, we can fit the data to a MA(1) model to obtain the moving average parameter and test the residuals for white noise. 

The model that we identified is 
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. We do not include a constant term because the mean of the differenced series is so close to zero. SAS uses the conditional least squares method of estimation for the parameters. This method obtains the parameters that minimize the sum of the squared residuals. Using SAS, the moving average parameter was determined to be -0.470, with a standard error of 0.065. The p-value for the estimate of the parameter was less than 0.0001. This allows us to reject the null hypothesis that the parameter is zero in favor of the alternative that it is different from zero. Next, we need to see if the diagnostic checks suggest that this is a good model. 

The residuals from the model were then examined to see if they were from a white noise process. The correlogram was once again used as a first check for white noise. The Durbin-Watson statistic, Bartlett’s test, and the Ljung-Box-Pierce test were also used. 
	Autocorrelation Plot of Residuals

	
	
	
	
	

	Lag
	Covariance
	Correlation
	
	Std Error

	
	
	
	
	

	0
	0.00052595
	1
	|                    |********************
	0

	1
	0.00001692
	0.03216
	|                 .  |* .                 
	0.073721

	2
	0.00001936
	0.03682
	|                 .  |* .                 
	0.073797

	3
	-0.0000228
	-0.04333
	|                 . *|  .                 
	0.073897

	4
	0.00001132
	0.02153
	|                 .  |  .                 
	0.074035

	5
	-0.0000374
	-0.07116
	|                 . *|  .                 
	0.074069

	6
	-5.81E-06
	-0.01104
	|                 .  |  .                 
	0.07444

	7
	0.00002086
	0.03966
	|                 .  |* .                 
	0.074448

	8
	0.0000131
	0.02491
	|                 .  |  .                 
	0.074563

	9
	-0.0000223
	-0.04236
	|                 . *|  .                 
	0.074608

	10
	0.00005401
	0.10269
	|                 .  |**.                 
	0.074739

	11
	0.00003504
	0.06662
	|                 .  |* .                 
	0.075502

	12
	-0.0000248
	-0.04723
	|                 . *|  .                
	0.075821

	13
	-0.0000576
	-0.10947
	|                 .**|  .                 
	0.07598

	14
	-0.0000833
	-0.15842
	|                 ***|  .                 
	0.076833

	15
	-0.0000279
	-0.05314
	|                 . *|  .                 
	0.078588

	16
	-6.16E-06
	-0.01171
	|                 .  |  .                 
	0.078783

	17
	0.00002564
	0.04875
	|                 .  |* .                 
	0.078793

	18
	-0.0000134
	-0.0254
	|                 . *|  .                 
	0.078956

	19
	-0.0000207
	-0.03945
	|                 . *|  .                 
	0.079001



The correlogram shows that the sample autocorrelations of the residuals are close to zero for lags greater than zero. This is an indication that the residuals are from a white noise process. 

The Durbin-Watson statistic for the lagged residuals of the moving average model was calculated to be 1.99. Since the value is not significantly different from 2, we cannot reject the null hypothesis that no serial correlation is present. The results from the Durbin-Watson test suggest that the series is from a white noise process. 

For the next check, Bartlett’s test was used. Given the 185 observations in this time period, the hypothesis for Bartlett’s test is that the sample autocorrelation coefficients are approximately normally distributed with mean zero and standard deviation 0.074. None of the first 19 sample autocorrelations exceed the 95% confidence interval calculated using these values. The null hypothesis that the time series is a white noise process cannot be rejected.


Finally, the Ljung-Box-Pierce test was used to confirm that the residuals were from a white noise process. SAS output showing the results of this test is given below.
	Autocorrelation Check of Residuals

	
	
	
	
	
	
	
	
	
	

	To
	Chi-
	
	Pr >
	
	
	
	
	
	

	Lag
	Square
	DF
	ChiSq
	--------------------Autocorrelations--------------------

	
	
	
	
	
	
	
	
	
	

	6
	1.88
	5
	0.8651
	0.032
	0.037
	-0.043
	0.022
	-0.071
	-0.011

	12
	6.05
	11
	0.8697
	0.04
	0.025
	-0.042
	0.103
	0.067
	-0.047

	18
	14.73
	17
	0.6152
	-0.109
	-0.158
	-0.053
	-0.012
	0.049
	-0.025

	24
	17.88
	23
	0.7637
	-0.039
	0.043
	-0.028
	-0.093
	0.006
	0.046

	30
	19.2
	29
	0.9161
	0.016
	0.067
	0.003
	0.003
	-0.027
	-0.022

	36
	22.31
	35
	0.9526
	0.015
	-0.08
	-0.012
	0.082
	0.014
	0.006



In this test, the p-values are very high all the way up to lag 36. Thus, we cannot reject the hypothesis that the autocorrelations of the residuals are zero. This means that the residuals are not correlated, indicating that they are from a white noise process. 

The results of the diagnostic checks confirm that the residuals are not correlated. We decide that the MA(1) model is appropriate and fits the series well because there is no autocorrelation left to explain. What is left after fitting the model is just noise. 

We conclude that the transformed and differenced data can be modeled by a MA(1) process with a moving average parameter of -0.470. This indicates that the interest rate data can be modeled using an ARIMA(0,1,1) process.


Since the proper model for the data has been deduced, we can now forecast the interest rates in future periods and use the holdout sample to see how accurate they are. First, the MA(1) model was used to find the forecast of the differenced and transformed data. From these forecasts, interest rate forecasts were obtained by reversing the transformation. The results for the holdout sample of May 1998 to September 1998 are shown below.
	Month
	Transformed 

Data Forecast
	Interest Rate 
Forecast
	Actual Interest

Rate
	Difference
(Actual-Forecast)

	May ‘98
	-.00203
	7.086%
	7.16%
	0.074%

	June ‘98
	0
	7.086%
	6.98%
	-0.106%

	July ‘98
	0
	7.086%
	6.93%
	-0.156%

	August ‘98
	0
	7.086%
	7.02%
	-0.066%

	September ‘98
	0
	7.086%
	6.94%
	-0.146%



The process MA(1) has a memory of only one period. This is seen in the table above, as the interest rate forecasts several months ahead are the same as the forecast one month ahead. Despite this limitation, the model does an adequate job of predicting future interest rates, as even the worst prediction is only about 2% off of the actual rate.
Conclusion


A-rated utility bond interest rates from the period of January 1970 through September 1998 were modeled using ARIMA processes. It was found that there were three distinct eras within this time series. The first, from January 1970 to August 1979, was modeled using an ARIMA(0,1,0), or white noise, process. The transition era, from September 1979 to November 1982, was not modeled due to the small sample size and high variability of the interest rates. The final era, December 1982 to September 1998, was fit to an ARIMA(0,1,1) model with a moving average parameter of -0.470. In both of the modeled eras, interest rates were forecasted for five months using the respective ARIMA model and a holdout sample was used to check the accuracy of the predictions. The forecasts were determined to be sufficiently accurate, confirming the choice of models in both cases.
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