TS sproj 041705221319041125051405220819
[NEAS: This candidate uses monthly border crossings in Texas.  The choice is excellent, for several reasons.  

The time series shows strong seasonal, trend, and autoregressive effects.  Analyzing the seasonality, trend, and correlograms provides a good student project, even if no ARIMA model gives white noise residuals.

Border crossing at highest each December and second highest each July, as the candidate expects.  The candidate suggests holiday shopping for December and summer vacations for July.  The high December crossing may also reflect family visits for Christmas, and the high July crossing may reflect summer work harvesting crops.

The low months each year are January and June.  These low months probably reflect the same phenomena.  Many people cross the border in December for shopping or to visit relatives for Christmas.  People who might cross in January are likely to come in December instead.

Statistical results are persuasive when they are well justified.  This write-up is well done. 

~
If your time series is seasonal, identify the months in your graphs.  The candidate shows the high border crossing in December and July with arrows in the graphs.

~
If you can justify the seasonality, include a sentence of a paragraph doing so.  The cause of the seasonality may help you decide what type of seasonally adjusted is best.

~
Construct the correlogram.  Annual seasonality causes a high negative sample autocorrelation at lag 6.  A 12 month seasonal parameter eliminates the negative sample autocorrelation at lag 6.

Many border crossings are the same people coming back year after year.

Illustration: A person might come each December for holiday shopping or each July for a job harvesting crops. This is an ideal scenario for a 12 month seasonal autoregressive parameter.  

Contrast this process with religious pilgrimages.  A pilgrimage has different people each year.  A person who visits Mecca one year may not make the trip again, or may return only ten years later.  The process is more likely to be white noise or a random walk, after adjusting for seasonality and trend.

Many exogenous effects occur gradually over the years.  Relations between countries take years to improve or deteriorate, and border crossings increase or decrease over long periods.  Relations between countries are not easily modeled as by-products of other events, so they are often best modeled by ARIMA processes.  Sometimes elections affect relations among countries, but most changes are long-term social phenomena.

Economic conditions greatly affect border crossing, and these evolve slowly over time.

Illustration: Migrant labor from Mexico encourages U.S. farmers to plant labor intensive crops, and labor intensive crops on U.S. farms encourages migrant labor from Mexico.

Illustration: Mexicans crossing the border for holiday shopping in December encourages U.S. retailers to build stores near the border with goods geared to Mexican shoppers.  The new stores further encourage Mexican shoppers to cross the border.

These relations are best modeled by ARIMA processes.]

1. Introduction and Project Description.

For this project I chose to study border crossings in Texas. I am not going to analyze immigration itself, just the number of people crossing into the United States. The figures are for actual monthly number of Train, Bus, and Personal Vehicle passengers, as well as Pedestrians, provided by the US Department of Transportation for the years 1995 to 2004. The Department’s can be found in http://www.transtats.bts.gov/BorderCrossing.aspx.
2. Methodology.
The first step is to visually inspect a graph of the data points, this will be done in order to see if separate eras are present; if we find separate eras, one of them will be selected for analysis. We will also be able to see if the series is stationary or if it has drift.

After an era is selected, the sample autocorrelations and correlation functions are calculated and graphed; from this, we will be able to see seasonality patterns.
If the series is non-stationary, First and Second Differences are calculated and the degree of homogenuity is estimated.

We next estimate AR(p) and MA(q) parameters for the time series. This will be done by using the relationship between these models and the autocorrelation of the series.

Once AR and MA have been estimated we combine them into an ARMA(p,q) or ARIMA(p,d,q) model – depending on the d-degrees of homogenuity found earlier.

The residual autocorrelation estimates of the ARMA/ARIMA model are then tested with the Box-Pierce statistic. This will show if our model is adequate.

3. Assumptions.

Initial assumptions are made with regards to the error terms in the actual process; namely, that they are normally distributed and independent. I also have some expectations about the behavior of the numbers over time. 

I expect to see some seasonality, especially during the winter months because people cross from Mexico into the US for Christmas shopping; I would also assume increased crossings during the summer vacation period.
I also expect to see the effects of immigration policies and regulations at different points in time: more stringent documentation requirements may decrease the number of crossings, while an increase of the personal tax free personal limit may increase them. These policies may have a short “shock” effect if people adjust to these policies or if the changes are temporary or a more permanent “era” effect if the changes are more drastic. One drastic event affecting border crossing will most likely occur after 9/2001.

4. Detailed Description.

A good amount of the analysis is performed by visually exploring graphs generated by the data, which are presented here; the numbers themselves, as well as the different calculations can be found in the attached Excel spreadsheet. 
The first step it to graph the Yt points themselves in order to spot clear events:
Figure 1
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Clearly, Figure 1 shows some seasonality as can be seen from the February and December points.  Furthermore, there is a separation in “eras” before and after September 2001, as expected. The era prior to 2001 appears to be non-stationary and have a positive drift; it is more difficult to see a drift after 9/2001, the numbers seem to be more stationary. It is also apparent that the 12/1995 point is a special event which may be analyzed in the future.
[NEAS: The candidate correctly says that exogenous factors with large, discrete effects, such as the tightening of the border after September 2001, distort the time series.  We model each era separately.  The candidates models the months before September 2001.

Some candidates worry that if they eliminate part of the time series, they are cheating.  The opposite is true.  ARIMA processes model homogeneous time series.  If the time series changes, we use different ARIMA processes for each part.  The candidate expects the time series to change after September 2001 and therefore uses the months through August 2001.]

I wish to actually estimate the parameters for the ARMA/ARIMA model. This can be a time consuming process so I will only do so for the first era.

First Era: 1/1995 – 8/2001


The first era clearly shows a linear drift; in order to remove this effect from our study we can take First Differences. The spreadsheet includes Second Differences as well, but this is only to verify the homogenuity degree.

Figure 2
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The sample autocorrelation graph for the 1st Era 1st Difference shown above (Figure 2) confirms the seasonal pattern we observed in Figure 1. We can see strong sample autocorrelations when k = 12, 24, 36,… and mild negative correlations with k = 18. 30, 42,… indicating a strong annual seasonality and thus an Autoregressive component of order 12. The sample autocorrelation for First Differences declines quickly towards 0 indicating that the series is probably homogeneous, non-stationary of order 1. Therefore, we are probably looking at an ARIMA(12,1,q) model.  
[NEAS: The correlogram shows the annual seasonality.  The correlogram has arrows showing the high and low points for lags of 12, 18, 24, and 36.  Fill in the arrows for months 6 and 30, also the lowest points in their years.]


To specify the MA parameter we can look at the correlation for different lags:

Figure 3
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  My initial estimate is that the series goes to 0 after the point k = 2 without considering the seasonality points k = 6, 12, 18,… The series thus appears to have a memory of 3 periods so the MA component is probably MA(3). Therefore my initial ARIMA model is ARIMA(12,1,3).
Parameter Estimation: AR process.

In order to estimate the 12 parameters + drift for the AR process, we can use multiple regression techniques we learned from the Regression Analysis course. In particular, we are estimating the parameters for yt = φ1yt-1 + φ2yt-2 + … + φ12yt-12 + δ + εt. This can be found using matrices and knowing that: β = (X’X)-1(X’Y).
The regression process yields these estimates for the AR(12) process:


[image: image4.emf]δ 1,583,435

φ1 0.22894

φ2 0.14210

φ3 0.25523

φ4 0.11175

φ5 0.05985

φ6 -0.08564

φ7 0.10228

φ8 -0.06244

φ9 -0.04097

φ10 -0.14262

φ11 -0.07499

φ12 0.38481


Parameter Estimation: MA process.


The parameters of the MA(3) process are somewhat more complicated to derive. These parameters can be found using the relationships between the parameters and the sample autocorrelation for MA(3): ρ1 = (-θ1+θ1θ2+θ2θ3)/(1+θ12+θ22+θ32),  ρ2 = (-θ2+θ1θ3)/(1+θ12+θ22+θ32), and ρ3 = (-θ3)/(1+θ12+θ22+θ32); however, there is no easy algebraic solution for these equations.

Instead of attempting to calculate these parameters algebraically, I created a macro in Excel that loops through a specified range of parameters and selects the best group; the macro is included in the attached spreadsheet. Using this method and applying it to the sample autocorrelation values, it appears that the values θ1 = -0.618, θ2 = -0.634, and θ3 = -0.970 are reasonable estimates for MA(3).

ARIMA Model Specification.


We now have all the components for the ARIMA(12,1,3) model. Combining the AR and MA portions we get: 
yt = φ1yt-1 + φ2yt-2 + … + φ12yt-12 + δ + εt - θ1εt-1 – θ2εt-2 – θ3εt-3

with:
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 and 
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These parameters make a reasonable fit to the original series as can be seen in the following graph:
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Diagnosis.


To check the fit of our ARIMA model we use the Box-Pierce statistic Q = T Σ rk2, where rk is the sample autocorrelation of the ARIMA residuals. If the model is good, the residual autocorrelations will be uncorrelated N(0,1/T).


The Box-Pierce statistic calculated in the spreadsheet is Q = 126 with (75 lags – 15 estimated parameters) = 60 degrees of freedom. The corresponding χ2(15,75) = 79.08 for a 5% significance. Since 79.08<126 we reject the hypothesis that the residuals are white noise and so the model is not good. The residuals from the model then appear to be autocorrelated and a higher order ARIMA model is needed.
[NEAS: The error described below occurs in several student projects.

The AR(1),AR(12) Process
The textbook authors refer to a monthly autoregressive process with annual seasonality as an AR(12) process.  This is a poor term, and it is not used by other statisticians.  The model may be AR(1) with a 12 month seasonal effect.  Other statisticians refer to this model as AR(1),AR12(s), meaning the process has non-zero parameters only for lags 1 and 12.

The candidate fits a regression equation with all 12 lags.  You may do this to check the correlations, but you fit the ARIMA process one lag at a time.  The lags of 2 through 11 add multicollinearity to the regression equation.  They don’t raise the adjusted R2 or reduce the standard error.  Use the following procedure for your student project:

Use a regression equation with non-zero coefficients at lags 1 and 12.  Check the adjusted R2, the t value for the slope coefficients, and the ESS.

Add an explanatory variable for lag 2.  Check if the adjusted R2 increases materially, and if the ESS decreases materially.  Check if the t value for the lag 2 coefficient is significant at a 20% level (a less strict significance level).  Continue adding explanatory variables only if each one adds value to the regression equation.

You will probably end up with 2 or 3 non-zero regression coefficients: φ1 and perhaps φ2  along with the φ12 seasonal coefficient.  Other sample autocorrelations that seem material from the correlogram will disappear.  This is a better model, and it forecasts better.


Illustration: Bills for heating oil are high in December, January, and February and low in June, July, and August.  The correlogram shows a strong negative autocorrelation for lags 5, 6, and 7, and positive for lags 1, 2, 11, 12, and 13.  One autoregressive coefficient for lag 12 eliminate most of the seasonal correlations, and a coefficient for lag 1 eliminates the correlations stemming from price changes.

The same applies to the moving average components.  Use the following steps:

Correlogram: If the sample autocorrelations after adjustment for the autoregressive terms and the seasonal terms can be explained by the random fluctuations of a white noise process, we don’t need moving average terms.  The correlogram in this student project does not suggest that a moving average component is needed:

~
The sample autocorrelations are not high.

~
They probably reflect the AR(1) and AR(12) parameters.

~
The short time series means the random fluctuations are high.

This does not mean that moving average terms are inappropriate.  You should test if an ARMA(1,1) model is better than an AR(1) or an AR(2) model.  Intuition might justify a moving average component, but the correlogram does not require it.  We surely won’t need three moving average terms.

Moving average parameters are used for industry sales of expensive, durable goods.  Border crossings are good examples.  Suppose a parent living in Mexico comes to visit a son or daughter with young children living in the U.S.  The trip is expensive and time-consuming, so it is not repeated frequently.  It is also durable. After a visit, the parent may wait a year or two to visit again.  The parent won’t visit the next month.

Suppose that visits were unusually high one month because political leaders eased border restrictions. More people than expected visit that month, reducing the number of people who visit the next month (if border restrictions are renewed).

Similarly, suppose border patrols close the border for one month, so fewer people visit.  Pent-up demand for border crossings builds.  If the border is opened the next month, more people visit.

We can justify a moving average component, so we examine the effects on the Box-Pierce Q statistic and Bartlett’s test.

Examine first an ARMA(1,1) model.  Back into the ARMA parameters with the Yule-Walker equations; you don’t need a statistical software package for this.  Compare the ARMA(1,1) model with an AR(1) model and an AR(2) model.  Your write-up can compare the three models, using the Box-Pierce Q statistic, Bartlett’s test, and out-of-sample forecasts.]

5. Conclusions.

The data makes for a nice study of time series, we were able to see seasonality and changes in eras. Unfortunately, the ARIMA(12,1,3) model specified failed the Box-Pierce test for significance. A higher order ARIMA model will need to be specified.

Nevertheless, I believe I have demonstrated adequate techniques for developing a time series model, specifying a new model involves repeating the same steps once again.

[NEAS: Ideas for Student Projects
Population movements create interesting student projects. You can use travel or pilgrimage data for your student project, such as visits to Mecca for the hajj or to various holy cities in the Hindu and Buddhist traditions.  Catholic pilgrimages occur in numerous places.  Data are not always available, but some web surfing may provide time series that you can use.

Airline passenger travel has seasonal, trend, and ARIMA properties.  Airline travel to warm resorts, such as the Carribean islands, may show seasonal fluctuations and trends.]
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