
Forming a Time Series Model for Daily Rainfall for the City of Vancouver 1971 – 2000
[NEAS: For guidance on weather time series, see the NEAS project template on daily temperature and daily rainfall.  This student project was submitted before the NEAS guidance was posted on the discussion forum.]

INTRODUCTION

The city of Vancouver is known for its long periods of overcast skies and rainfall.  Rainfall occurs most often during the winter season and rains for several days.  This project will attempt to form an ARIMA process to describe daily rainfall in Vancouver from 1971 to 2000.  First rainfall data will be collected from the Canadian Weather Agency.   Then the data will be deseasonalized and a correlogram will be formed.  Observing the correlogram we will test several models to see which best represents the deseasonalized data.  Diagnostic testing, white noise process, will be done to see the validity of each model.
[NEAS: The candidate uses daily rainfall in Vancouver.  For ARIMA modeling, choose a location with a high percentage of rainy days, such as 40% or more.  If the percentage of rainy days is too low, such as 15% or less, the ARIMA model will not forecast well.]

METHODS

First daily rainfall data is inputted into an Excel spreadsheet.  There is approximately 11,000 data points from 1971 to 2000.  In order to deseasonalize the data points, we divide each daily rainfall amount by the average rainfall per day for that specific month calculated by the Canadian Weather Agency.
[NEAS: The candidate de-seasonalizes the data using the monthly averages published by the weather service.  For your own student project, change two things:

(1) We subtract the monthly average, not divide.  Neither subtraction nor division is perfect, but we get better results by subtracting.

Illustration: Suppose the average daily rainfall during the year is normalized to one.  In July, the average daily rainfall may be 0.200.  For a day with rainfall of 1.00 in July, the seasonally adjusted rainfall is 0.800 using subtraction and 5.00 using division.

(2) We use daily averages if daily rainfall is highly seasonal with sharp breaks between the months.  See the project template on daily temperature and daily rainfall.]

Next a correlogram is formed from the data.  This is done by taking the sum of the product between two series, first for adjacent days (lag 1), and then for days separated by 2 days (lag 2), 3 days (lag 3) and so forth.  These values are then divided by the sum of the squares of the deseasonalized rainfall deviations.  This calculation will produce an exact sample autocorrelation function.  We will examine the first 30 lags of the correlogram and from that we will intuitively decide whether the rainfall data is more likely an autoregressive function or a moving-average function.  If it is an autoregressive function, we can perform a regression analysis on it to determine the optimal regression equation.  The form of the autoregressive function is:



Y = (1 + (2 X2 + (3 X3 + …   … + (k Xk
We will test the function up to 4 independent variables.  The Excel regression function gives the values of R2, adjusted R2, and t statistics, which we will consider in deciding on an ARIMA process for rainfall.
Once the regression analyses have been performed, up to 4 independent variables, we will perform a Durbin-Watson Statistic to see if there is any serial correlation. 
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It is believed that there is no serial correlation but the test will verify it.  
Lastly, we will perform a Box-Pierce Q Statistic test, with K = 60, to see if each optimal regression equation is a white noise process or not.  If there is not a white noise process we can assume that the model contains another independent variable that is affecting the equation.
RESULTS
After deseasonalizing the rainfall data, a correlogram was formed, Figure 1.
Figure 1 – Correlogram of Vancouver Rainfall up to Lag 30.
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Observing the graph, we can see that there is a significant correlation with the first lag and then it gradual tails off to oscillate around 0.  Since there was a large amount of data point examined, the correlation might be small but can be significant.  To see if this process is a moving-average, the graph should have a sharp peak at lag 1 and then drop to oscillate around 0 for lag 2 and onwards, since moving average only has a memory of 1.  This graph does not show this effect and thus we can intuitively proceed onto examining an autoregressive process.

In the next part, we performed 4 regression analyses (Table 1 – 4).  In each table it contains the values of the optimal estimators, R2, adjusted R2, and t statistics.
Table 1 – Regression Analysis between Deseasonalized Rainfall Separated by up to 4 Days

	Regression Statistics
	
	

	Multiple R
	0.218227502
	
	

	R Square
	0.047623242
	
	

	Adjusted R Square
	0.04727531
	
	

	Standard Error
	2.224089873
	
	

	Observations
	10954
	
	

	 
	Coefficients
	Standard Error
	t Stat

	Intercept
	0.738811232
	0.026634
	27.73925

	X Variable 1
	0.202903083
	0.009555
	21.23501

	X Variable 2
	0.027668438
	0.009746
	2.839058

	X Variable 3
	0.030119047
	0.009746
	3.090513

	X Variable 4
	0.018555783
	0.009555
	1.941978


Table 2 – Regression Analysis between Deseasonalized Rainfall Separated by up to 3 Days

	Regression Statistics
	
	

	Multiple R
	0.217492165
	
	

	R Square
	0.047302842
	
	

	Adjusted R Square
	0.047041853
	
	

	Standard Error
	2.224281365
	
	

	Observations
	10955
	
	

	 
	Coefficients
	Standard Error
	t Stat

	Intercept
	0.752676253
	0.025645477
	29.34928

	X Variable 1
	0.203543162
	0.009550395
	21.31254

	X Variable 2
	0.028200854
	0.009742716
	2.894558

	X Variable 3
	0.033906893
	0.009550367
	3.550324


Table 3 – Regression Analysis between Deseasonalized Rainfall Separated by up to 2 Days

	Regression Statistics
	
	

	Multiple R
	0.21497259
	
	

	R Square
	0.046213214
	
	

	Adjusted R Square
	0.046039054
	
	

	Standard Error
	2.225370339
	
	

	Observations
	10956
	
	

	 
	Coefficients
	Standard Error
	t Stat

	Intercept
	0.778992393
	0.024553366
	31.7265

	X Variable 1
	0.204746924
	0.009549105
	21.44148

	X Variable 2
	0.03515503
	0.00954907
	3.681514


Table 4 – Regression Analysis between Deseasonalized Rainfall Separated by up to 1 Days

	Regression Statistics
	
	

	Multiple R
	0.212224282
	
	

	R Square
	0.045039146
	
	

	Adjusted R Square
	0.044951975
	
	

	Standard Error
	2.226556869
	
	

	Observations
	10957
	
	

	 
	Coefficients
	Standard Error
	t Stat

	Intercept
	0.80728174
	0.023323186
	34.61284

	X Variable 1
	0.212222357
	0.009336469
	22.73047


Examining the tables, we see that all 4 tables have low R2 and adjusted R2 but the t-stat for all the estimators were significant at a 5% level.

[NEAS: The correlogram shows an AR(1) process.  The candidate correctly compares AR(1), AR(2), AR(3), and AR(4) models.  He notes that

~
The increase in the adjusted R2 is not material after AR(1).

~
The decrease in the standard error is not material after AR(1).

~
The t values for the past day are high.]

Next a Durbin-Watson statistic was performed on all 4 regression equation.  Table 5 shows the results:


Table 5 – Durbin-Watson Statistic:  Test for Serial Correlation


	Number of Independent Variables
	Durbin-Watson Statistic

	1
	2.014937

	2
	2.002394

	3
	2.001267

	4
	2.000073


As we can see all 4 regression equations had values around 2 meaning that we accept the null hypothesis that there is no serial correlation.
Lastly, a Box-Pierce Q Statistic test was performed to test the null hypothesis that the residuals were white noise processes.  Table 6 show the critical values for varying significances at k = 60 and Table 7 show the values calculated from the four regression equation at k = 60.


Table 6 – Critical Values for Box-Pierce Q Statistic Test

Chi-Square Critical Values for 60 Degrees of Freedom

	Level of Significance
	.05
	.01
	.005

	Critical Value
	79.08
	88.38
	91.95


Table 7 – Calculated Values and Conclusion of the White Noise Process

	Number of Independent Variables
	Q Statistic
	Rejection of Null (.05 level)
	Conclusion

	1
	65.526
	Do not reject
	White noise

	2
	55.288
	Do not reject
	White noise

	3
	31.938
	Do not reject
	White noise

	4
	29.603
	Do not reject
	White noise


From the two tables we can see that all 4 regression equations have white noise process occurring for their residuals.  This would suggest that one independent variable can describe the rainfall data, AR(1).
DISCUSSION & CONCLUSION
After deseasonalizing the rainfall data, we attempted to produce a time series model that would explain rainfall in the city of Vancouver from 1971 to 2000.  Upon examining the data from the correlogram, we intuitively ruled out a moving-average model because of a sloping curve towards 0 rather than a discrete drop from the lag 1 coefficient value to 0 at lag 2.  Thus we examined the autoregressive model to see if we could produce an equation that could describe the rainfall process.
After performing 4 regression analyses ranging from one independent variable (lag 1) up to four independent variables (lag 4), we see that the all for optimal regression equations have low R2 and adjusted R2 but the t-stat for all the estimators were significant at a 5% level.  This would suggest that previous day rainfall can only account for a small proportion of present rainfall.  This result might indicate a more complex model is required to explain rainfall like an ARIMA.  However due to being limited to using Excel it is very difficult to model an ARIMA process.  However continuing with our analysis we performed a Durbin-Watson Statistic and found that there was no serial correlation present.  This means that the error terms from adjacent days are not correlated.  Finally a Box-Pierce Q Statistic test was performed to see if the residuals of the 4 models were white noise or not.  From the results we see that all 4 models were below the critical level suggesting that their residuals were random white noise.  Therefore from the models we tested it would seem that the best one was the AR(1) due to it being the least complex while having similar results as the rest of the 3 models.  Again, we believe that although AR(1) is probably the best model tested, there is most likely a better more complicated model that would describe rainfall more accurately like an ARIMA model, where there is both a moving-average and autoregressive component.  However due to its complexity this model was not tested.
