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Examining Social Views on Sexual Attractiveness through Time


We seek to determine what characteristics define sexual attractiveness, and whether or not there has been a trend in these characteristics over time that is dependent on previous years’ sexual ideals.  We will focus on two specific measurements: a woman’s waist to hip ratio (WHR) and body mass index (BMI).  A wide variety of research has been completed in recent years attempting to answer the same question.  This research will be mentioned later in the paper to provide a foundation for the chosen methodology of our examination.


In recent years, various evolutionists have argued that what people consider to be sexually attractive is not as superficial as one might think.  These theorists propose that sexual attraction is not necessarily idiosyncratic, but more or less dependent upon what physical characteristics will provide the best mate for child bearing (Rajan).  Of these childbearing characteristics there has been much emphasis on a woman’s waist to hip ratio (WHR).  Rajan tells that “a number of studies have indicated that among healthy women of child bearing age, this ratio [WHR] ranges from .65 to .75,” which would indicate that men should be more sexually attracted to women whose WHR fall into this range.  


In 1993, Devendra Singh completed a study on sexual attractiveness that focused on the WHR of women since the 1950s that had been Playboy centerfolds and winners of the Miss America pageant.  Singh worked with data from these two categories of women on the basis that society has accepted these women as a standard of attractiveness.  Singh concluded that the WHR of both the Playboy playmates and Miss America pageant winners centered on .70 over the span of roughly 40 years.  While his conclusions seem to reaffirm the evolutionists’ idea that attraction is based on childbearing fitness, it also indicates that there has been no change in the societal norms of physical appearance since 1950, which is obviously not true.  


In response to Singh’s paper, Jeremy Freese evaluated an updated version of Singh’s dataset, only to conclude that Singh’s theory was incorrect.  Both Singh and Freese fit linear models to the data, using the predicted values from their regression lines to show how the measurements increased or decreased over time.  While Singh claimed that both the Playboy playmates and the Miss America pageant winners had WHR that consistently fell into the range of .68 to .72, with mean .70, Freese asserted that the actual mean value was .677 for pageant winners and .676 for Playboy playmates.  Freese continued to speak of other discrepancies with Singh’s conclusions, mentioning that for the Playboy playmates “…the overall range [of WHR] is even wider: from 0.529 (Winters, appeared in Sept. 1962, 18/34) to 0.788 (Fare, appeared in Aug. 2000, 26/33).”  Freese also concluded that the trend in WHR for the Miss America pageant winners was decreasing over time (r =-.55, p < .001), while the Playboy playmates WHR was increasing over time (r =. 46, p < .001).  Assuming that these opposing trends demonstrate a disagreement in what would be considered the trend in male preferences, Freese felt that there was ample evidence to disprove Singh’s theory, and affirm the idea that attraction is merely based on unique preferences.


Having examined Singh’s and Freese’s positions on sexual attractiveness, particularly WHR, we will attempt to identify a clear determinant of sexual attractiveness, as well as establish a trend in time that is dependent on previous year’s observations.  Rather than focusing on WHR, we chose to study BMI in light of the current issues that surround women’s weights and the increase in the incidence of eating disorders.  Since the 1960s the number of cases of eating disorders has doubled (Eating Disorders Coalition).  Assuming that the actions that women take to be considered sexually attractive accurately reflect the current norms in society’s standards of sexual attractiveness, one could argue that this increase in the cases of eating disorders indicate that BMI is a more accurate measurement of sexual attractiveness.  

In our examination we compiled a slightly updated version of the dataset used by Freese on Playboy centerfolds, also collecting height and weight.  We chose to exclude the Miss America pageant data, as we felt that the pageant winners do not provide a good standard of sexual attractiveness.  In the preliminary Miss America competition the scores used to determine the top ten finalists are calculated using a variety of weights in each of the pageant categories.  Of these weights, only 35% of the total score is dependent on categories that reflect sexual attractiveness, specifically Swimsuit and Evening Wear (Miss America Organization).  As 65% of the score needed to advance comes from the categories of Talent, Private Interview, and On Stage Question, it seems that winning the Miss America pageant is more dependent on factors that do not reflect physical appearance.  Therefore, using only the Playboy playmate data seemed much more appropriate, as centerfolds are chosen solely on their physical appearance.  The investigation below provides results that demonstrate that BMI is a solid measurement of sexual attractiveness, and that there has been a significant decreasing trend in BMI over time.

Methodology

Data for the height and weight of the Playboy playmates was obtained from the Playboy Corporation’s website.  Freese’s dataset ranged from December 1953 to May 2001.  This dataset, however, did not provide information for 38 playmates between the years 1954 and 1959, which would make the evaluation of a trend in the data through time less accurate, and probably very liberal in the first 7yrs of the time span.  To create a more precise model of the data through time, we chose to work with an initial dataset that ranged from January 1960 to May 2001 (N=497).  A separate playmate dataset was compiled that ranged from June 2001 to the present, which would later be used to test our model’s ability to predict future values.  In both datasets BMI was computed from the centerfolds’ heights and weights using the following formula: BMI = (weight in kilograms)/(height in meters^2). 

Freese points out the fact that the measurements provided on the Playboy centerfolds are self-reported, thus there is potential that the playmates may have misreported their measurements.  Nonetheless, the topic of investigation focuses on women’s attempts to have the perfect body.  Therefore, if the reason that playmates may have biased their data in the attempt to have more desirable numbers, one could easily argue that the provided measurements accurately reflect society’s standards of sexual attractiveness.

Time series analysis was used to model the data and to predict future observations.  This method was chosen over other modeling methods, because there is good reason to believe that there is an internal structure within the data, such as autocorrelation, trend, or seasonal variation (Engineering Statistics Handbook).  While other methods do not address these internal structures, time series analysis takes into account that data taken over time may encompass some or all of these internal structures.  Assuming that what is considered sexually attractive today is dependent on what was considered sexually attractive in recent years past, the existence of an autoregressive relationship marked by an underlying trend is likely to appear in the Playboy centerfold data.  Time series analysis is also more likely to produce better forecasts of future data than other modeling methods.  After selecting model for our data a series of diagnostics tests were completed to ensure the suitability of our model.  All modeling and analysis of the data was completed using a statistical analysis program called R. 

Modeling Results


Prior to fitting a time series model some preliminary steps were performed to prepare the data.  First, estimates for missing values were computed using interpolation of values before and after the missing value.  Next, the data was checked for stationarity through an examination of a plot of the time series data and a graph of the autocorrelation function (Figure 1).  Fluctuations of the time series data indicated that the mean and auto covariance were not independent in time.  The ACF confirmed that the data was non-stationary.  As the ACF did not decay to zero at any point in time there was a definite indication that dependence on previous observations existed in the data.  The fact that we were working with non-stationary data was an important factor in choosing what class of models to use.  When working with non-stationary data it is necessary to use some form of a transformation on the data to make it stationary, leading us to consider the class of ARIMA models.  Given that ARIMA models contain a parameter for differencing, using such a process made is possible to make the data stationary, then, model for any autoregressive or moving average parameters.  Making the data stationary through differencing will later be addressed when estimation of model parameters is discussed. 
Figure 1: Plot of the time series data and ACF prior to differencing.
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A final step that was completed prior to fitting a model was determining if the series exhibited any significant seasonality.  As the data was collected on a month-to-month basis, any seasonality would be exhibited in the course of a 12-month cycle.  Figure 2, provides monthly box plots of the BMI for the playmates.   Examining this figure reveals that there is no evidence for any seasonal trend in the data, as all box plots have very similar means and ranges.  This result could be expected, as there is no real reason why Playboy playmates’ BMI would follow a 12-month cycle.
Figure 2: Monthly box plots for playmate BMI
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Having addressed stationarity and seasonality of the data, estimation of a model was ready to be completed.  As previously mentioned we chose to use an ARIMA (p,d,q) process, where p is the number of autoregressive parameters, d is the number of rounds of differencing, and q is the number of moving average parameters.  After differencing, the ARIMA process reduces to that of an ARMA process, making identification of the order of differencing the first step.  The lowest order of differencing that can be completed, while still achieving stationary data is the optimal number to be used.  Therefore, we began to test if first-order differencing would be sufficient.  An examination of a plot of the time series data and the ACF after first-order differencing revealed that stationarity had been accomplished (Figure 3).  The mean of the data was made constant through out time being centered at zero without change in the variability of the data.  The ACF also rapidly decayed to zero, indicated that there was no longer any strong interdependence within the data.      
Figure 3: Plot of the time series data and ACF after first-order differencing.
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Subsequent to identifying the order of differencing we worked to distinguish the order of the autoregressive (AR) and moving average (MA) parameters.  This process was completed with the aim to maximize the likelihood estimates of the parameters without over fitting.  Using the Akaike Information Criterion (AIC) during the process of order selection we were able to find the most suitable model, while penalizing the use of too many parameters.  After testing a variety of models, an ARIMA(1,1,2) model was selected as it had the lowest AIC value.  Below is a table summarizing some of the tested models, as well as a summary of the estimated parameters of the selected model.  
Figure 4a: Summary of potential models
	ARIMA(p,d,q) Model
	Log Likelihood
	AIC

	ARIMA(0,1,1)
	-673.51
	1351.02

	ARIMA(0,1,2)
	-672.51
	1351.01

	ARIMA(1,1,1)
	-672.61
	1351.23

	*ARIMA(1,1,2)
	-671.01
	1350.13


Figure 4b: Summary of ARIMA(1,1,2) Model

	
	AR(1)
	MA(1)
	MA(2)

	Coefficients
	-0.7458  
	-0.1423  
	-0.7757

	Standard Errors
	0.1870   
	0.1652   
	0.1557

	
[image: image6.wmf]s

2 estimated as 0.8722:  log likelihood = -671.07,  AIC = 1350.13



The ARIMA (1,1,2) model that R derived can be written in the form 

Xt+.7458Xt-1=Zt-.1423Zt-1-.7757Zt-2.  It is important to note that after differencing the time series, we treated the ARIMA process as an ARMA(1,2) process.  R completed parameter estimation using maximum likelihood estimations.  The process begins by assuming that the differenced time series {Xt} is a Gaussian time series with mean zero and autocovariance function 
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[image: image9.emf](Brockwell & Davis).
The equation is therefore dependent upon the autocovariance function of the time series.  Calculation of the covariance matrix can be avoided by using the one-step prediction errors and their variances as found by the innovations algorithm.  The innovations algorithm is defined as follows, starting from the covariance
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Calculation of the autocovariance function plays a crucial role in the recursive relationship of the innovations algorithm.  For the ARMA(1,2) model, calculation of the autocovariance function can be completed using the following process:


Starting with our model 
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, then using linear operators we have 
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.  Solving for the values of Ψ, in terns of Φ and θ, we can apply these values to solve for the autocovariance function.  This process was completed as seen below.
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Now, we put the autocovariance function in the form where it is dependent on Ψ:
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Applying these results to the innovations algorithm, our likelihood equation reduces to the below equation, where 
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 are the one-step prediction errors and 
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are the mean squared errors.  Parameter estimation was completed with the goal of obtaining values for ф and Ө that maximize the below equation.
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Diagnostic Checking and Forecasting

Prior to drawing any conclusions from our model, we performed a series of diagnostic checks to test the suitability of our model.  These tests centered on the idea that when a good model has been fit the residuals should exhibit the characteristics of a white noise sequence.  A particularly important characteristic that the residuals of a good model must encompass is that they are independently and randomly distributed.  Testing for these characteristics was completed using the follow series of graphs: a graph of the standardized residuals, the autocorrelation function of the residuals, and p-values for the Ljung-Box Statistic of the first ten lags (Figure 5).  

Figure 5: Graphs used for diagnostic testing.
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First, looking at the graph of the standardized residuals we can see that they are roughly centered at zero, with only a few observations yielding large values.  This supports the idea that our residuals are indeed randomly distributed.  Next, examining the ACF of the residuals it is clear that there is no apparent dependence within the data.  None of the sample autocorrelations fall outside the bounds of a 95% confidence interval.  This is the exact type of pattern we would expect to see from a white noise sequence.  Finally, we consider the p-values of the Ljung-Box statistics.  The Ljung-Box test examines the null hypothesis of independently distributed residuals.  Looking at the p-values for the first ten lags, none of them fall below the value of .80.  For that reason, we can conclude that our residuals are independently distributed.  The information obtained from these three tests indicates that we have found a correctly specified model.

Going from the conclusion that our model has been correctly specified, we can attempt to forecast future observations from our model.  R uses innovations algorithms for the method of forecasting with ARIMA models.  This method takes into account the problem of trying to estimate a time-controlled process that is dependent on a differencing equation, as in the case of our model.  The innovations algorithm finds the best linear predictor for each future value, as determined by the same elements that were used in parameter estimation.  Using R to predict the next 12 observations (June, 2001 through May, 2002), we were able to plot the forecasted values, as well as a 95% confidence interval for each value (Figure 6).  The resulting confidence intervals seem to be consistent with what we would expect for future BMI values of Playboy centerfolds. 

Figure 6: The black line coming off the end of the data is the forecasted values.  The dotted lines above and below the forecasted values are the bounds for a 95% confidence interval.
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In addition to examining a plot of the forecasted values, we were also able to compare those values with the actual BMI values of Playboy centerfolds in that time period.  Below is a table of the 12 forecasted BMI values from June, 2001 to May, 2002 along side the upper and lower confidence bounds, and the actual BMI values (Figure 7).  It is important to note that all of the actual BMI values fall within the 95% confidence range.  This demonstrates a good degree of reliability in our model’s ability to forecast future observations, which is an important factor testing the suitability of our model.
 Figure 7: Forecasted observations against actual future observations.
	
	June, 2001
	July, 2001
	Aug.,2001
	Sept.,2001
	Oct.,2001
	Nov.,2001

	Upper Confidence
	19.86372 
	20.03273
	19.91520
	20.00913 
	19.94412
	19.99695

	Forecasted BMI
	18.033
	18.191
	18.073
	18.161
	18.096
	18.144

	Actual BMI
	17.753
	17.107
	18.598
	18.636
	19.483
	18.244

	Lower Confidence
	16.20282 
	16.34898
	16.23145
	16.31284 
	16.24710
	16.29178


	
	Dec., 2001
	Jan., 2002
	Feb.,2002
	Mar.,2002
	April,2002
	May,2001

	Upper Confidence
	19.96151
	19.99169 
	19.97281
	19.99045
	19.98081
	19.99149

	Forecasted BMI
	18.108
	18.135
	18.115
	18.13
	18.119
	18.127

	Actual BMI
	17.788
	18.879
	17.934
	19.135
	16.820
	19.106

	Lower Confidence
	16.25449
	16.27856 
	16.25698
	16.26951
	16.25665
	16.26275


Conclusions

After completing the ARIMA process on the BMI data and ensuring the fitness of our model, we are now in a position to answer the initial questions posed on social standards of sexual attractiveness.  The first conclusion that we can derive is that standards of sexual attractiveness do not stem from individual preferences, as Freese had attempted to maintain in his argument on sexual attractiveness.  The autoregressive nature of the data reinforces the idea that current sexual standards are affected by past ideals and that future standards will continue to be biased in the same fashion.   

Continued evaluation of our model clearly demonstrates a negative trend in BMI since the 1960s.  Perhaps one of the more simplistic implications of this conclusion stem from our estimated model parameters.  Interesting evidence of this trend can be found in a graph of the forecasted observations and confidence intervals as compared to the entire time series (Figure 8).  Looking at the bounds of our confidence intervals, which range roughly from 16.2 to 20, this range is significantly lower than the range of values seen in the 1960s and early 1970s.  Not only this, but the upper confidence bound notably cuts of the upper range of the data in that time period.  These findings show that there has been a negative trend in BMI through time.  Also, taking into account the fact that the actual future values of BMI fell within our confidence intervals the existence of a negative trend is concretely reaffirmed.
Figure 8: Forecasted values and confidence bounds against the entire time series.
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Given that we are holding BMI as an indicator of sexual attractiveness, the existing negative trend in BMI can be directly related to the previously noted increase in cases of eating disorders.  Coupling this trend with the conclusion that current and future standards of attractiveness are dependent on past ideals has potentially life threatening implications.  If the patterns that we have observed in our data set continue into the future, women who are desperately trying to meet the imposed social standards of sexual attractiveness could quite possibly wither away.  While this is a worst case scenario, it is still evident that society has place unnatural standards of attractiveness on women, and that these ideals are in need of a change.   
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