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Introduction
The purpose of this paper is to perform a careful ARIMA modeling on the Chicago Bears Football Team.  The team participated in football games as far back as 1922.  Data was gathered from "NFL.com".  The data was then formatted in excel to allow an ARIMA modeling of the loss percentages.
Sample Autocorrelation Function

The chart below shows the losing percentages for the Chicago Bears Football Team (Bears).  The Mahler paper on won-loss records of baseball teams states an expectation of a losing percentage of around 50%.  
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As you can see from the chart, the average is well below 50%, fluctuating around 40%

The chart below is the Sample Autocorrelation Function.  After fluctuating for several lags, the autocorrelation tends towards zero, indicating a stationary time series.
[image: image2.emf]Sample Autocorrelation Function
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Autoregressive Models
Looking at the sample autocorrelation function above, we can rule out a purely moving average process.  The chart shows a geometric decay to zero rather than falling quickly to zero after several lags.  Using the regression add-in in Excel, an investigation of the following models was performed:  AR(1), AR(2), AR(3), AR(4) and AR(5).  In addition, an ARMA(1,1) was modeled and will be discussed later.  Using the data in the tab "AR Data", the results of the regression can be found in the tabs named after the respective models in the Excel spreadsheet.  The resulting equations are summarized below:

	Model
	Adj. R2
	Intercept
	1st Coeff
	2nd Coeff
	3rd Coeff
	4th Coeff
	5th Coeff

	AR(1)
	16.81%
	0.245
	0.427
	n/a
	n/a
	n/a
	n/a

	AR(2)
	18.83%
	0.200
	0.335
	0.199
	n/a
	n/a
	n/a

	AR(3)
	17.22%
	0.201
	0.332
	0.194
	0.008
	n/a
	n/a

	AR(4)
	16.48%
	0.185
	0.333
	0.185
	-0.021
	0.075
	n/a

	AR(5)
	16.41%
	0.172
	0.332
	0.178
	-0.050
	0.016
	0.138


The resulting adjusted R2s show that the third variable offers no additional explanatory value, with lower values resulting for the AR(3) and beyond.  Also since the coefficients for the third variable and beyond move closer to zero, it is likely that they do not add any value.  This is backed up by the low t-statistics (0.0662, -0.1590, -0.3692 for AR(3) – AR(5)) and higher P-values (0.9474, 0.8741, 0.7131) for Year T-3. 
We can verify our selection of the AR(1) and AR(2) models using the Yule-Walker equations.  For an AR(1) process, our sample autocorrelation, ρ1 should equal our coefficient for Year T-1, Φ1.  Values of 0.4269 for Φ1 and 0.4198 for ρ1 show a good fit of the AR(1) model.
For an AR(2), the Yule-Walker equations are as follows:

ρ1 = Φ1  /(1 – Φ2)

ρ2 = Φ2  +   Φ12 /(1 – Φ2)

Solving these equations (see Correlogram tab in Excel spreadsheet) gives results of Φ1 = 0.337 and Φ2 = 0.196, which compare very favorably to the coefficients 0.335 and 0.199 in our autoregression.
ARMA(1,1) Model

We can determine the coefficients for an ARMA(1,1) recursively using the equation for the autocorrelation function given in Pindyck-Rubinfeld:

ρ1 = (1 - Φ1θ1) ( Φ1- θ1) /(1 + Φ12 - 2 Φ1θ1)

ρ2 = Φ1 ρ1
Tab ARMA(1,1) shows calculations and the following results:
Φ1 = 0.805
θ1= 0.492
δ = 0.0817
Comparison of Models

We can now compare our three models:

	Model
	Φ1
	Φ2
	θ1
	δ 

	AR(1)
	0.4269
	 
	 
	0.2453

	AR(2)
	0.3352
	0.1992
	 
	0.2004

	ARMA(1,1)
	0.8046
	 
	0.4916
	0.0817


Using the Pindyck-Rubinfeld textbook, the autocorrelation functions were generated in tab ARMA(1,1) of the Excel spreadsheet with the results in the table on the following page.  The lower result for the error sum of the squares in the AR(2) model of 0.1515 when compared to 0.2508 for the AR(1) model suggests that an additional past year provides a better model.  In addition, the ARMA(1,1) result of 0.0617 compares more favorably with the AR(2) result suggesting that either one of the 3 parameter models may be a reasonable fit for this process.  The totals for the error sum of the squares for all lags support this with results o
f 2.76, 2.66 and 2.68 for the AR(1), AR(2) and ARMA(1,1) respectively.
	Lag
	Sample Autocorr
	Model Autocorrelation

	
	
	AR(1)
	AR(2)
	ARMA(1,1)

	1
	0.4198
	0.4269
	0.4186
	0.4198

	2
	0.3377
	0.1823
	0.3395
	0.3377

	3
	0.1997
	0.0778
	0.1972
	0.2717

	4
	0.1786
	0.0332
	0.1337
	0.2186

	5
	0.1959
	0.0142
	0.0841
	0.1759

	6
	0.1811
	0.0061
	0.0548
	0.1415

	7
	0.2560
	0.0026
	0.0351
	0.1138

	8
	0.2209
	0.0011
	0.0227
	0.0916

	9
	0.1957
	0.0005
	0.0146
	0.0737

	10
	0.0250
	0.0002
	0.0094
	0.0593

	Lag
	Squared Differences

	
	AR(1)
	AR(2)
	ARMA(1,1)

	3
	0.0149
	0.0000
	0.0052

	4
	0.0211
	0.0020
	0.0016

	5
	0.0330
	0.0125
	0.0004

	6
	0.0306
	0.0159
	0.0016

	7
	0.0642
	0.0488
	0.0202

	8
	0.0483
	0.0393
	0.0167

	9
	0.0381
	0.0328
	0.0149

	10
	0.0006
	0.0002
	0.0012

	SUM
	0.2508
	0.1515
	0.0617


Durbin-Watson Statistic

We can further compare our models by analyzing any possible correlation among the residuals.  The Durbin-Watson Test considers the null hypothesis that no serial correlation is present.  We can accept this null hypothesis if our Durbin-Watson Statistic, DW is between our upper limit, du and 4 - du.  Table 5 on page 610 of the Pindyck-Rubinfeld text shows 5% significance points for the upper and lower limits for the Durbin-Watson Test.  For 100 observations, the upper limit for 2 explanatory variables is 1.69, while the upper limit for 3 explanatory variables is 1.72.
The DW statistic is calculated in the tabs for the models AR(1), AR(2), and ARMA(1,1), showing results of 2.099, 1.960, and 1.928 respectively.  All of these values allow us to accept the null hypothesis that no serial correlation is present.  Also, all of these values are very close to 2, indicating no first-order serial correlation.

Box-Pierce Statistic

In addition to the DW statistic, the Box-Pierce Statistic, Q is calculated on the Excel spreadsheet on the tabs for each model.  The results are summarized on the "Box-Pierce" tab and on the following page.  The statistic Q will have a Chi-square distribution with K – p – q degrees of freedom.  (p+q = 1 for AR(1) and 2 for both AR(2) and ARMA(1,1)).

The results in the table show that all of our Q statistics are well below the critical values at 10% significance; therefore, we do not reject the null hypothesis that the residuals are white noise.
	K Value
	AR(1)
	AR(2)
	ARMA(1,1)
	Chi-Square Critical Value @ 10% Significance

	
	
	
	
	Degrees of Freedom

	
	
	
	
	K-1
	K-2

	3
	2.27
	0.27
	0.91
	4.61
	2.71

	4
	2.39
	0.30
	1.46
	6.25
	4.61

	5
	3.32
	0.56
	1.50
	7.78
	6.25

	6
	3.57
	0.72
	1.58
	9.24
	7.78

	7
	6.00
	2.70
	4.08
	10.64
	9.24

	8
	6.44
	3.62
	4.74
	12.02
	10.64

	9
	8.21
	5.21
	6.02
	13.36
	12.02

	10
	8.44
	5.59
	6.83
	14.68
	13.36

	11
	8.75
	6.80
	8.73
	15.99
	14.68

	12
	9.17
	7.52
	10.71
	17.28
	15.99

	13
	9.26
	7.62
	10.93
	18.55
	17.28

	14
	9.35
	7.66
	10.97
	19.81
	18.55

	15
	9.35
	7.76
	11.01
	21.06
	19.81

	16
	10.15
	8.86
	12.26
	22.31
	21.06

	17
	10.15
	8.87
	12.28
	23.54
	22.31

	18
	10.45
	9.70
	13.31
	24.77
	23.54

	19
	11.25
	10.88
	15.11
	25.99
	24.77

	20
	11.73
	11.08
	15.16
	27.20
	25.99

	25
	14.55
	13.57
	18.04
	33.20
	32.01

	30
	17.67
	18.81
	23.67
	39.09
	37.92

	35
	21.58
	22.22
	28.10
	44.90
	43.75

	40
	22.48
	23.02
	29.02
	50.66
	49.51

	45
	24.70
	25.79
	33.18
	56.37
	55.23

	50
	26.40
	27.08
	34.47
	62.04
	60.91

	55
	26.98
	28.23
	36.41
	67.67
	66.55

	60
	29.96
	31.45
	39.34
	73.28
	72.16

	65
	31.09
	32.42
	40.40
	78.86
	77.75

	70
	32.49
	33.61
	41.81
	84.42
	83.31

	75
	33.09
	34.09
	42.42
	89.96
	88.85


One Period Ahead Forecasts
The final test for comparing our models is to check the accuracy of each using one period ahead forecasts.  The results are summarized in the tables on the following page:

	YEAR
	Actual
	Forecasted Loss %

	
	Loss %
	AR(1)
	AR(2)
	ARMA(1,1)

	2007
	?
	32.53%
	32.55%
	34.63%

	2006
	18.75%
	37.87%
	44.21%
	41.88%

	2005
	31.25%
	53.88%
	54.29%
	48.68%

	2004
	68.75%
	48.54%
	53.84%
	38.63%

	2003
	56.25%
	56.55%
	48.92%
	26.15%

	ESS of forecast     (2003-2006)
	0.1286
	0.1455
	0.2652

	
	
	
	


	YEAR
	Actual
	Forecasted Losses (rounded to nearest game)

	
	Losses
	AR(1)
	AR(2)
	ARMA(1,1)

	2007
	?
	5
	5
	6

	2006
	3
	6
	7
	7

	2005
	5
	9
	9
	8

	2004
	11
	8
	9
	6

	2003
	9
	9
	8
	4


	YEAR
	Actual
	Forecasted Wins (rounded to nearest game)

	
	Wins
	AR(1)
	AR(2)
	ARMA(1,1)

	2007
	?
	11
	11
	10

	2006
	13
	10
	9
	9

	2005
	11
	7
	7
	8

	2004
	5
	8
	7
	10

	2003
	7
	7
	8
	12


The AR(1) appears to be the best fit.  However, overall none of the models produce a very good fit. 
Conclusion

One would not expect to be able to predict accurately future loss percentages by modeling a time series.  There are many factors involved that are not taken into account, such as:  coaching changes, scheduling, draft picks, injuries and countless other variables.  An AR model may be a better fit for some of the historically strong teams, since it takes into account a long term mean, but it will fail to predict the very best and very worst seasons.  However, I will reserve final judgment until after the 2007 season to determine which model is more accurate in predicting the number of wins.
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