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Can Birth Rates Be Modeled With a Time Series?
Introduction:

The purpose of this project is to take real data and model it using a time series.  If modeled correctly, the time series can be used to forecast future values of the series.  The data I chose to model was United States birth rates from 1909 – 2000.  Birth rates are an important statistic because they reflect many things that might be happening at a specific point in time.  For instance, birth rates tend to decline during times of economic depression and increase during times of prosperity; making them a good indicator of good times vs. bad.  They are also an indicator of changes in population which is something that needs to be known ahead of time and planned for accordingly.  Therefore, the ability to forecast future birth rates with a time series model is something we are interested in.

The birth rates used in this project are defined as the number of childbirths per 1,000 persons per year in the United States.  The data was obtained from the following website: www.pbs.com (Population Reference Bureau).  We attempt to separate the data into two separate time series and model each series separately using various ARIMA processes.  After the models are specified and parameters are estimated, we use them to forecast birth rates for years where data is available.  We compare the forecasts to the actual data to determine if the model is a good fit.
Model Specification:

Getting a stationary series:

When modeling a data set, the first thing we want to check for is if the series is stationary.  The autocorrelation function will tell us how many times the series needs to be differenced in order to get a stationary series.  You can find the calculations for the autocorrelation functions in the “Correlations Calc” worksheet.  The following is the autocorrelation function for the entire data set of birth rates:
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For a stationary series, we are looking for a quick drop off to zero which we are seeing here.  However, since the series becomes positive again after 30 lags and proceeds to drop off to zero by 43 lags, the data most likely represents two time series with different means.  We proceed by splitting the data into two separate series: 1909 – 1938 and 1939 – 2000 which will be referred to as series 1 and series 2 respectively.

We regress both time series on the same values but one period back to get an AR(1) model for each.  As seen in the worksheets “Orig Reg (series 1)” and “Orig Reg (series 2)” the (for series 1 is .99 and the (for series 2 is also .99.  This indicates that the birth rate series is a non-stationary random walk which leads us to look at first differences in order to get a stationary time series.
The following is the autocorrelation function for the first differences of the entire data set:
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The above graph continues to emphasize the two distinct time series.  If we look at them separately (the first one starting at lag 0 and then second one starting at lag 31), we can see that they both decline fairly rapidly to zero indicating a stationary series.  As was done previously, an ARIMA(1,1,0) model is fit to both series and the absolute value of  ( was .14 for series 1 and .32 for series 2.  Since these values are both less than one, we can conclude that both series are stationary.  We can now be fairly confident in saying that both of our series are homogeneous non-stationary of order 1.
Testing for white noise:

Once we know a series is stationary, we check if it is white noise.  The autocorrelations do not remain close to zero until lag 64 indicating that the Box – Pierce Q statistic is too high to reflect a white noise process.

We now know that the first differences give us two stationary series which are not white noise; therefore we can fit them to ARIMA processes.  We will be modeling ARIMA(1,1,0) and ARIMA(2,1,0) for each series.  

Parameter Estimation and Diagnostic Checking:
The following are the equations for the two models we will be fitting our data to:

· ARIMA(1,1,0): yt = (1yt-1 + ( + (t  where ( = ( / (1- (1 )

· ARIMA(2,1,0): yt = (1yt-1 + (2yt-2 + ( + (t  where ( = ( / (1- (1 - (2)

We will start by looking at both models for the 1909 – 1938 first difference series.  The regression calculations can be found in the “1st diff reg (series 1)” worksheet.

ARIMA(1,1,0): yt = – .14378yt-1 + .44731 + (t  where ( = .39
ARIMA(2,1,0): yt = – .20087yt-1 – .25724yt-2 + .59163 + (t  where ( = .41
As mentioned above, |(1| < 1 and (1 + (2 < 1 so we know that the series is stationary. The mean of the first difference series is .37 so both models have means which are relatively close to the mean of the series.

However, for the ARIMA(1,1,0) model, the R2 is low at .019972 and the adjusted R2 is negative at -.01772.  The negative adjusted R2 and the t- value < 1 implies that the act of suggesting the model uses more information than it reveals.  Most likely, this model is not a good fit for our data.  For the ARIMA(2,1,0) model the R2 increases to .081932 and the adjusted R2 becomes .005427 which is an improvement.  

The next step in testing the fit of our data is to look at the residuals and determine if they are white noise.  If they are, this is an indication that the model is a good fit for the data.  We do this by looking at the Durbin-Watson statistic and the Box – Pierce Q statistic which can be found in the “Durbin-Watson (series 1)” and the “Box-Pierce Q Stat (series 1)” worksheets.  The following is a summary:

	Series 1909-1938
	
	
	

	
	
	Box-Pierce Q
	2 

	
	DW Stat
	(20 lags)
	10% Sig/19 DF

	ARIMA(1,1,0)
	2.02
	11.655
	27.2

	ARIMA(2,1,0)
	1.81
	7.603
	27.2


A DW statistic of approximately 2 indicates no serial correlation among the residuals and that the residuals are a white noise process.  As we can see above, the DW statistic tells us that the ARIMA(1,1,0) model is a white noise process and the ARIMA(2,1,0) model could be a white noise process.  As a second test, we look at the Box – Pierce Q statistic which has a (2 distribution with K – p – q degrees of freedom.  In both cases the Q statistic is less than the (2 statistic at a 10% significance level with 19 degrees of freedom.  This tells us that we cannot reject the null hypothesis that the residuals are a white noise process.  Both of these tests indicate that the residuals of both models are a white noise process.
The above process was repeated for the second series we looked at: 1939 – 2000.  The regression calculations can be found in the “1st diff reg (series 2)” worksheet:

ARIMA(1,1,0): yt = .31565yt-1 + .04626 + (t  where ( = .068

ARIMA(2,1,0): yt = .44892yt-1 – .40393yt-2 + .0819 + (t  where ( = .086

As mentioned above, |(1| < 1 and (1 + (2 < 1 so we know that the series is stationary. The mean of the first difference series is .077 so both models have means which are relatively close to the mean of the series.  The ARIMA(1,1,0) model has an adjusted R2 of .0844 while the ARIMA(2,1,0) has an adjusted R2 of .2262 indicating a much better fit.  Also, the ARIMA(2,1,0) model has lower standard errors, higher t-statistics and lower p-values.  The ARIMA(2,1,0) model seems to be a better fit.  
The following is the summary of DW statistics and Box-Pierce Q statistics for both models found in the “Durbin-Watson (series 2)” and the “Box-Pierce Q Stat (series 2)” worksheets:

	Series 1939-2000
	
	
	
	
	

	
	
	Box-Pierce Q
	Box-Pierce Q
	2 
	2 

	
	DW Stat
	(20 lags)
	(41 lags)
	10% Sig/19 DF
	10% Sig/40 DF

	ARIMA(1,1,0)
	1.72
	21.586
	28.388
	27.2
	51.81

	ARIMA(2,1,0)
	1.85
	19.633
	26.994
	27.2
	51.81


The DW statistics are both less than 2 indicating that the residuals may or may not be a white noise process.  Q statistics for 20 lags and 41 lags are not significant in any case so we can conclude that the residuals are a white noise process for both models.  However, in agreement with what was found above, the ARIMA(2,1,0) model has a DW statistic closer to 2 and lower Q statistics indicating it is a better fit.
Model Evaluation:
Now that we have our models specified and the parameters estimated, we need to test their ability to forecast future values.  In order to do this, we perform ex post forecasts which involve forecasting first differenced birth rates for years where data is already available.  This way, we can compare actual values with the forecasted values and determine if our models do a good job at forecasting future data.  These forecasts are unconditional since the values for all of the explanatory variables in the forecasting equation are known with certainty.
The following is a graph showing the forecasted vs. actual values for time series 1 (can be found in “Summary” worksheet):
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As you can see above, the ARIMA models don’t do a great job at forecasting future values.  They are closest to the actual values for 1935 and 1936 but are far off from the actual values for 1934, 1937 and 1938.  The ESS for the ARIMA(1,1,0) model is 2.33 as opposed to 2.51 for the ARIMA(2,1,0) model indicating it might be a slightly better fit, but neither seem to be reliable. 

The following is a graph showing the forecasted vs. actual values for time series 2 (can be found in “Summary” worksheet):
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The graph shows us that both ARIMA models fit the second series much better than the first series.  The ARIMA models themselves are not that different from each other and they seem to forecast 1996 and 1999 pretty accurately.  However, the models are not precise for 1998 and 2000 so they are not consistently good estimators of future values for the series.  The ESS values were computed to be .14 and .24 for ARIMA(1,1,0) and ARIMA(2,1,0) respectively.  These errors are much lower than we saw with series 1 so we can conclude that these time series models are a much better fit for series 2.

Conclusion:
Birth rates are an informative statistic and are of interest to many people including actuaries because they affect pension plans, health costs, social security programs, and insurance costs.  The ability to project future birth rates is a useful tool; therefore, this project attempts to do so by fitting the data to time series models.  We found that for the 1909 – 1938 series, neither an ARIMA(1,1,0) nor an ARIMA(2,1,0) is a good fit for the data.  The values forecasted by these two models are not consistent with the actual values at that point in time.  For the 1939 – 2000 series we found that these two models do a much better job of fitting the data and forecasting the future values.  Although they are a better fit, they were not consistently correct; hence they are not 100% reliable.  Perhaps a more complex time series can be developed to better fit our data, but the models shown here should not be used with confidence.  For the first series, the models should not be used at all.  For the second series, the models can be used to get an idea of what future indications might look like but they should not be trusted with certainty.  
