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Introduction
Time series analysis has widespread applications in actuarial work. They can be used to study various financial data including current and future business cost. In medical insurance, there are monthly incurred amount that an insurance company will commit to pay, which account for the majority of the total expense for the company. Various factors can affect the amount. The most important one is how the insurance contract is underwritten (or benefit). Once that is set, the number of membership will dominate the amount. Other factors that may change the incurred cost could include medical cost increase (trend), seasonality and other fluctuations. 

In this project, I will try apply time series analysis to total medical cost in the medical insurance industry.
To study the total cost, we would like to isolate the factors that are not the scope of this project. Obviously we have to first assume the contract is relatively the same during the period we are interested in, which is mostly likely the case. There are always constant minor contract modifications. As long as these modifications will not materially change the structure of insurance benefit, we can think all data in the period as one data set. Even in the case that major contract change exists in the data, we can still first determine the amounts that are caused by the contract change, and then back them up to the previous time.
Although the membership in a certain company is also a time series and could be the subject of a time series study, we would like to study the medical cost and exclude the fluctuations caused by membership. The easy way to do this is to use the cost per month per membership (PMPM), which is a general parameter in medical insurance industry.
Data

In this project, I will use real data from my work. This will make the analysis harder, but it is worth the efforts to get experience to apply what you learn in book to your work. However, to comply with company policy while still keep the statistical features of data, I scale the real data by some magic constant factors. The resulting data is in the tab “RawData” on the first tab in the attached Excel file.
The first column is the incurred date, from January 2003 to December 2006. I have a total 48 points of data. The second column is the final total incurred amounts. Although the data for year 2006 are estimated amounts and not totally completed, the complete factors (CF) are all well above 90%. The next column is the membership. The 4th column is the PMPM for that month. 

The plot of PMPM data is shown the Figure 1.
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Figure 1. Incurred PMPM data from January 2003 to December 2006
Model Specification
Not surprisingly, the data plot shows a trend, which is normal for medical cost in recent years. From the plot, we can see that data show a linear trend instead of an exponential increase, which is very common for financial data. This particular data look like to have just linear trend. This can be also due to the fact that there are not enough data to show what exact type of trend is. However, the logarithm plus difference was tried, and the results were not as good as just plain difference. So we will just use normal difference instead of logarithm plus difference.
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Figure 2. The 1st order difference of the data.
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Figure 3. The correlogram for the data with DOF adjusted.
As shown in the tab “Specification”, we take the difference of the data for 1st order and 2nd order. The 1st order difference is defined as
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, and 2nd order difference will perform the same operation on the data of 1st order difference. With 48 original data point, there will be 47 and 46 points of data for the 1st and 2nd order difference, respectively. We can see that the trend has been eliminated from the plot for the 1st order difference, which is shown in the Figure 2. 

Although we get rid of the trend from original data, we still need to test if the resulting data is stationary. To do this, we need to calculate the autocorrelation. The calculations are displayed in the row 52-104 for 1st order difference data, and row 106-157 for the 2nd order difference data in the same tab. As shown in the calculation, the exact formula that defines autocorrelation is used for the calculation. The correlogram of the 1st order difference data is shown in the Figure 3.
From the plot, we can see that autocorrelation is geometrically declined and sinusoidal, which is typical for an auto-regression process. A careful look at the plot reveals that it is not exactly positive and negative after one another, which is the autocorrelation for a 1st order auto-regression process. However, it is also not an exact 2nd order auto-regression process, which an autocorrelation plot is shown in the page 532 of our text book. So the real process might be a process that is more complicated than just a 1st or 2nd order auto-regression. 
Although the values in correlogram is geometrically declined in general, there is an abnormal point at lag 12, which is obviously higher than the surrounding points, even for the small-lag points. However, unlike examples in the text book that have peaks every period in lag, we only see a weak peak at lag 12, and peaks at lag 24 and 36 are not obvious. This might indicate that there is weak correlation between data and its lag 12 data. The difference of data with its lag 12 data was tried, but results were not good. From business point of view, the cost of one-year before may be a good indicator of cost today, but not necessarily have exact relation.
If we compare the both correlograms of both 1st and 2nd order difference data, we see the similar pattern (Please refer to the tab “Specification” in the attached Excel worksheet.). An additional difference of the data only adds complex to the modeling without much benefit, and we try to avoid it if possible. So only the 1st order difference is used in this project.
From above analysis, we can see that our data is an ARIMA(p,1,0) process, where p is going to be determined in the following section.
Autoregression Analysis
When we think about an auto-regression model to explain data, the model will be a standard model as following:
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where 
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 is the order of auto-regression to be determined

As indicated in previous section, we found that autocorrelation is geometrically declined in sinusoidal waveform and there is a weak peak of lag 12. Naturally we would like to try different p, such as p = 1, 2, 3, 12. The auto-regression was performed by using Excel built-in regression in the “Analysis ToolPak”. To prepare for the regression, data are arranged in the required format. Please see the tab “WorkData” in the attached Excel file. To make results comparable to each other, we will use the last 35 points of data, which is the total 47 points minus 12 for lag. The regression results are shown in each tab of the Excel file, which are summarized in the Table 1. The DW in the table stands for Durbin-Watson statistics.
	Model
	R2
	Residual
	DW
	χ2 (DOF)

	
	Raw
	DOF Adjusted
	Correlation w/ lag=1
	Auto-correlation
	
	

	p=1
	0.551
	0.537
	-0.377
	-0.354
	2.597
	53.94 (34)

	p=2
	0.662
	0.641
	0.124
	0.120
	1.684
	22.58 (33)

	p=3
	0.679
	0.648
	0.118
	0.115
	1.700
	20.61 (32)

	p=12
	0.888
	0.826
	-0.0247
	-0.0247
	2.043
	8.55 (23)


Table 1. Summary of regression for auto-regression with p=1, 2, 3, 12.
We can see from the table that as p increases, the R2 increases, residual correlation decreases, DW is closer to 2 and χ2 decreases. These all indicate that the auto-regression model could better explain the data with more explanatory parameters, which is generally true for regression analysis. For the model p=12, although R2 is reasonable good, it may be over-fitting due to the fact that only 35 points of data are available. Also, when we take a careful look of the fitting results (see the tab “p12”), we can see that not all coefficients of lag data play significant roles in the regression. Some of these parameters have very small t-statistics and large p-values. All these suggest that we might achieve similar results with fewer independent variables. This will lead to a special auto-regression model, in which some of the coefficients in previous model will be zero.
Since lag 12 data is statistically very significant with large t-statistics and lowest p-value, as also indicated in correolgram, we want to keep the lag 12 data. Based on the similar reason, lag 1 data is also included. Any additional explanatory variable has to meet the F-Test criteria. The F-Test is defined as (see text book):
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where
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 is the reduced  number of independent variables
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 is an F-distribution with q degrees of freedom for numerator and N-k degrees of freedom for denominator. 
The regression analysis is summarized in Table 2. The F-Test is based on an unrestricted model from previous model. For example, the F-test for Model Lag 1-2-3-4-12 is based on Model Lag p12 as unrestricted model and Model Lag 1-2-3-4-12 as restricted model. The detailed information can be found in the attached Excel file in various tabs.
	Model
	R2
	Residual
	DW
	χ2 
(DOF)
	F-Test 

 (DOF)

	
	Raw
	DOF Adjusted
	Correl’n w/ lag=1
	Auto-correlation
	
	
	

	p12
	0.888
	0.826
	-0.0247
	-0.0247
	2.043
	8.55(23)
	-

	1-2-3-4-5-12
	0.857
	0.826
	-0.135
	-0.134
	2.263
	13.52(29)
	0.996(6,33)

	1-2-3-4-12
	0.856
	0.831
	-0.123
	-0.122
	2.237
	12.46(30)
	0.208 (7,32)

	1-2-3-12
	0.831
	0.788
	-0.0738
	-0.0735
	2.136
	11.49(31)
	8.60(1,31)

	1-2-12
	0.803
	0.784
	-0.0915
	-0.0909
	2.165
	12.91(32)
	1.70(1,30)


Table 2. Summary of regression for auto-regression with difference models.

From the table above, we can see that there is an obvious drop in R2 from model 1-2-3-4-12 to model 1-2-3-12, especially in adjusted R2. The correlation and autocorrelation show a fluctuation, and the first and last two models have absolute values below 0.1. Even for the middle two models, they are not very bad. The DW tests are all around 2, which mean that the serial correlations in residual of all models are not very strong. Although DOFs are various, we probably can not reject null hypothesis. This is consistent with correlation statistics. With almost all DOFs around 30 and a value around 12 for the χ2, we can not reject null hypothesis with significance level higher than 99% that residual are white noise. The last test is F-test. The statistics of 8.6 with DOF of (1, 31) corresponds to a p = 0.008
, which shows that the drop of lag 4 data significantly could reduce the fitting statistics.
Based on what we observe from the table, we can conclude that the model with lag data 1-2-3-4-12 will be the best if an over-fitting is a concern. Otherwise, a model with all 12 lag data will be appropriate if there are more data available.

The comparison plot for auto-regression fitting is shown in Figure 4, and final forecast vs. data plot is shown in Figure 5. Both plots are for the model with lag data of 1-2-3-4-12. Both plots for standard auto-regression with p=12 are slightly better. The detailed calculations can be found in the Excel file with corresponding data type on the tabs. The overall fitted R2 is 0.918 and 0.923 for lag 1-2-3-4-12 model and p12 model, respectively.
We can see from both plots that fitting quality is reasonably good. Model can catch most peaks and valleys, and follows the general trend pattern of data. Although there are always gaps between fitted and real data, these can be regarded as random error terms. 

To further improve the model, we may need to include moving average terms in the analysis, which will make the model more complicated, but might give better results. This will need special analysis tools for nonlinear regression. Also, to further validate the model, we need more data to do not only ex post but also ex ante tests.
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Figure 4. The fitting comparison of model predicted vs. data used.
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Figure 5. The forecast value vs. real data.
Conclusion
A monthly medical cost per membership in a health insurance company composes a good example of time series. This project uses 4-year real data. After differencing the data, correlogram was constructed to determined model type. Different ARIMA(p,1,0) models were tried to fit the data. Special forms of auto-regression models were also tested. Various statistics were calculated to test the significance of models to explain the data. It has been proven that PMPM data can be modeled with ARIMA model and resulting model can be used for forecast with a fair good quality. The model can be further improved with more data and more complicated model.
� The value was calculated at the website: http://stattrek.com/Tables/F.aspx
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