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Foreword
When I initially read through the discussion board about the final project, I was aware that NEAS provided data for the student project.  It was made clear that the process to collect data can be more difficult than performing an analysis of the data.  Keeping NEAS’s recommendation in mind, I wanted to embark on collecting my own data.  I can confirm that finding data was not an easy task and at first I thought that my data would be insufficient.  I was reassured in one of the postings that as long as I enough data to perform statistical techniques, then I should be fine.  Collecting my own data was important to me because it ensures that my project is unique.
The Data

The data I used came from two government websites:

1) U.S. Department of Justice, Office of Justice Programs, Bureau of Justice Statistics.  (http://www.ojp.usdoj.gov/bjs/welcome.html)

2) Office of Justice Programs, Office of Juvenile Justice and Delinquency Prevention, National Center for Juvenile Justice  (http://ojjdp.ncjrs.gov)

I was able to compile the following data for the years 1980 through 2000:

i) Number of Homicide victims of juvenile offenders.
ii) Percent of youth who dropped out of grades 10-12 (in preceding 12 months).
iii) Percent of youth (under the age of 18) living with two parents.
iv) Percent of youth (under the age of 18) living in poverty.
Please refer to the pink tab labeled “data for final project” for the inputs for each variable (located in the excel file)
Objective
There have been many arguments regarding the reasons why juveniles commit crimes, more specifically, homicides.  Living arrangements, poverty level and drop out rates are three factors I chose to use in my research.  I tried to obtain information regarding violence in the media (TV, internet, video games, etc.), however, the data collection process was taking too long.  My goal for this project is to see how the number of homicide victims of juvenile offenders relates to three variables:  1) living arrangements, 2) poverty level, and 3) drop out rate.  
As I run simulations on the data I will focus on three aspects of the outputs:

1) I will compare the R2 of each simulation, while paying close attention to how the t-statistics vary for each independent variable changes.

2) I will observe differences in the residual plots for each simulation. 

3) If there is evidence that a β parameter changes, I will attempt to correct the regression.  (Using dummy variables)
Regression Model I

The first regression model I tested was:



Hom = β1 + β2(DRt) + β3(PLPt) + β4(PLt) + εt , 

Where, 
Hom = # of Homicide Victims of Juvenile Offenders

DR = Percent of Youth who dropped out of grades 10-12 in preceding 12 months



PLP = Percent Living with 2 Parents (under the age of 18)



PL = Percent Living in Poverty (under the age of 18)

Data Analysis of Regression Model I (refer to the tab labeled “Simulation I”)
	Regression Statistics

	Multiple R
	0.729483081

	R Square
	0.532145566

	Adjusted R Square
	0.449583019

	Standard Error
	601.0097627

	Observations
	21

	 
	Coefficients
	Standard Error
	t Stat

	Intercept
	8250.110655
	3445.8765
	2.394198

	DR
	-3622.91318
	25086.431
	-0.144417

	PLP
	-16032.5908
	5052.4818
	-3.173211

	PL
	27787.2883
	8340.1942
	3.3317316


From the outputs of the regression analysis I can conclude that PLP and PL are more significant variables than DR.  The t-statistic for DR (drop out rate) is not significant at the 5% level because it is less that 1.98 in absolute value.  Because of the low t-statistics, I have considered running a second regression using only PLP and PL as independent variables.

When I look at the residual plots for DR, PLP and PL, I notice that only PLP has residuals that are positioned horizontally along the x-axis and the variance of the residuals (as well as the variance of the parameters) seems fairly constant.  DR is slightly V-shaped indicating that the variance of the estimated parameter does not stay constant throughout the entire range.
Regression Model II

The second regression model I tested was:




Hom = β1 + β2(PLPt) + β3(PLt) + εt

Data Analysis of Regression Model II
	Regression Statistics

	Multiple R
	0.72909

	R Square
	0.531572

	Adjusted R Square
	0.479524

	Standard Error
	584.4347

	Observations
	21

	 
	Coefficients
	Standard Error
	t Stat

	Intercept
	8203.835
	3336.324
	2.458944

	PLP
	-16288.7
	4600.629
	-3.54053

	PL
	28043.44
	7924.662
	3.538755


According to the output, R Square, did not change much at all once we dropped DR from the regression.  However, the adjusted R square did increase significantly (from .450 to .480) and the standard error decreased (from 601 to 584.4).  
The residual plot for PL (poverty level) looked slightly v-shaped.  I decided to attempt to correct the problem by setting up a Dummy Variable to see if the number of Homicides differ for higher levels of poverty.  My new regression model was:




Hom = β1 + α1(D) + β2(PLPt) + β3(PLt) + α2 (PLPt)D  + α3 (PLt)D + εt

Where D = 1 if PL ≥ 20%, and D = 0 otherwise.

Data Analysis of Regression Model II with Dummy Variables (The Unrestricted Model)
	Regression Statistics

	Multiple R
	0.788755

	R Square
	0.622135

	Adjusted R Square
	0.527669

	Standard Error
	556.7483

	Observations
	21

	 
	Coefficients
	Standard Error
	t Stat

	Intercept
	5445.218
	3930.705
	1.385302952

	PLP
	-8550.87
	5922.988
	-1.44367422

	PL
	13677
	16269.27
	0.84066441

	DumPLP
	-10615.4
	5597.651
	-1.89640573

	DumPl
	36983.62
	20150.78
	1.835344106


In order to test the null hypothesis for the Dummy Variables (α1 = α2 = α3 = 0), We must use Equation (5.21):
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Where 

Unrestricted R2 = 0.622135, 




Restricted R2 = 0.531572



q = 3


k = 5



N = 21

	At 5% Level

	F3,16 =
	3.24

	
	

	At 1% Level

	F3,16 =
	5.29


We can conclude that we can not reject the null hypothesis of the Dummy Variables because the calculated F value is LESS THAN the critical Values at both the 5% and the 1% significance level.  

Another observation I was able to make what that the residual plots did not change much once I ran the simulation with the Dummy Variables.  This concludes that the number of Homicides do not differ for different levels of poverty.
Regression Model III (Apply Dummy Variable to Regression Model I)
I was curious to see what would happen if I went back to my original regression model and applied a Dummy Variable to PLP (Percent of teens under 18 that live with two parents).  My new unrestricted model is:

Hom = β1 + α1(D) + β2(DRt) + β3(PLPt) + β4(PLt) + α2(DRt)(D)   + α3(PLPt)(D)   + α4(PLt)(D)  + εt
Where,

	Let D = 0 if PLP ≥ 75%

	Let D = 1 if 70% < PLP ≤ 75%

	Let D = 2 if PLP ≤ 70%


(Please refer to the tab labeled “Simulation III with Dummy Variables”)

	Regression Statistics

	Multiple R
	0.901051

	R Square
	0.811893

	Adjusted R Square
	0.731275

	Standard Error
	0.419942

	Observations
	21

	 
	Coefficients
	Standard Error
	t Stat

	Intercept
	28.05566
	6.17177457
	4.545801748

	DR
	-144.851
	63.71556982
	-2.273392905

	PLP
	-17.0106
	8.826135417
	-1.927295365

	PL
	-24.5955
	14.51996955
	-1.693908588

	Dum2PLP
	-17.423
	5.235656672
	-3.327754665

	Dum2PL
	31.83147
	8.821755436
	3.608292467

	Dum2DR
	95.4047
	54.46227605
	1.751757421


The first thing I noticed was that none of the t-statistics were extremely low.  Most of them were greater than 1.96 in absolute value, and a few were close in value.  Initially the t-statistic for DR was -.14444 which is extremely lower than 1.96, proving it to be insignificant.  

I was very pleased to see the following results:



Simulation I (Before)



Simulation III (After)


R2 = .532




R2 = .812



Adjusted R2 = .450



Adjusted R2 = .731



(ESS) 2 = 6.14




(ESS) 2 = 2.47

Noticing a significant increase in R2 and the adjusted R2 indicates that the model with the Dummy Variables is a better predictor for the number of homicides victims of juvenile offenders.  According to the residual plots, overall, the residuals are all much closer to the horizontal line.  (This indicates that the variance of the parameters do not change throughout the regression).  We also can see this numerically because the value of (ESS) 2 decreases significantly.
In order to check if the regression model with the Dummy Variables was significant at the 1% and 5% level, I tested the null hypothesis that all of the dummy coefficients are all equal to zero.  
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Where 

Unrestricted R2 = .811893




Restricted R2 = .532146


q = 4


k = 7


N = 21

	At 5% Level 

	F4,14 =
	3.11

	 
	 

	At the 1% Level

	F4,14 =
	5.04


Since the F statistic is greater that the critical value, we can conclude that the number of homicides do differ for different levels of PLP (Percent of teens under 18 that live with two parents).  Using Dummy Variables is significant at both the 5% and 1% level.
Conclusion

Classical regression techniques are very useful when the independent and dependent variables are linearly related and the regression parameters are constant throughout the entire range of the data.  In reality, most regression parameters do not remain constant throughout the entire range.  We must be able to adjust the regression models to reflect a change in the regression parameters.  Using Dummy Variables is just one way that we can modify a regression in order to correct the change in parameter.  If successful, our new model (with the dummy variables) should offer a more reliable regression equation where the variance of the estimated parameters is more constant throughout the entire range.  We can use F statistics to test the null hypothesis that the dummy coefficients are equal to zero.  If our F statistics is greater that the critical value, we can reject the null hypothesis and conclude that our dummy regression model is significant at either the 5% or 1% level.  
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