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    The purpose of the project is to develop an ARIMA model for CPI college tuition and fee seasonal adjusted data.

Data Examination

    I chose the monthly CPI College Tuition data to build the ARIMA model. The period of the data is from January 1978 to April 2006. There are 340 observations. I used first 316 observations as in-sample, the other 24 observations as out-of-sample which will be used to check the forecasting later. All calculations and graphs were done with statistical software R. 

    The time series of the CPI versus the month drifts upward and shows a noticeable increasing trend. It's obvious that the time series is not stationary. This is a hint that differencing might be beneficial. 

Figure 1: The time series plot, ACF and PACF of CPI. 
[image: image1.png]T
&

200 30 400

100

10

00 02 04 06 08

Time Series of CPI

Series CPI1

ACF

00 02 04 06 08

T T T T T
1980 1985 1990 1995 2000 2005

Year

Series CPI1





    I also noted that the series is strictly positive. This automatically suggests investigating a logarithmic transformation of the data: to preserve positivity of all future predictions and prediction intervals and to achieve an estimate that is a quasi-MLE. However, a look at the histograms of log-CPI shows that it is not closer to symmetric. So we cannot argue for taking logarithms on a quasi-MLE basis. Also we can see that the series of log-CPI is not improved.

Figure 2: Time series plot and histogram of CPI after logarithm transformation.
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    Finally, the variance of the series is roughly the same at all levels and across time. This homoscedasticity is another argument against taking logarithms and another hint that differencing might be appropriate.

    The correlogram also shows that the sample autocorrelations are very strong and positive and decay very slowly. This is another way to show the process is non-stationary. 

    From this correlogram, we can conclude that there does not seem to be any obvious seasonal pattern and outliers in the data.

Model Specification
    After first differencing the data, we can see that there is some improvement in the data. However, there is still upward trend in the series and the sample autocorrelations are still strong and decay slowly. I also take logarithmic transformation and then first differencing, however, no improvement appears. We may need second differencing. 

Figure 3: The time series plot, ACF and PACF of first differenced CPI. Note that the series is still non stationary.
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    The plot of the second differenced data shows that the mean of the differenced data is about zero, with the differenced data less autocorrelated than the original data. So, the stationarity has been achieved. 

Figure 4: The time series plot, ACF and PACF of second differenced CPI. Note that the series is clearly stationary.
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    Then I examined the correlogram to see if any pattern remains. The correlogram of the differenced data with a 95% confidence band shows that the autocorrelation after lag 1 is not significant. So an MA(1) model is suggested for the differenced data.

    To examine other possible models, I produced the partial autocorrelation plot the differenced data. The partial autocorrelation plot of the differenced data with 95% confidence bands shows that there are no significant partial autocorrelations after lag 5. This suggests an AR(5) model may be appropriate for the differenced data.

    Based on the above discussion, an MA(1) or AR(5) or something in-between would fit best.

Model Fitting
    I preferred an MA(1) model over an AR(5) model because it is more parsimonious. Since the AICs of the MA(1) and ARMA(1, 1) are close, we can consider the two models to be near-equals. Therefore, I modeled the CPI with an ARIMA(0,2,1) or ARIMA(1,2,1) model.

     
[image: image5.wmf]1

1

1

2

1

2

-

-

-

+

D

=

D

t

t

t

t

y

y

e

q

e

f

     ARIMA (1,2,1)                    (1)
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 EMBED Equation.3  [image: image7.wmf]                   ARIMA (0,2,1)                    (2)

    From the model specification, we can then easily estimate the model coefficients and associated standard errors for the models in Equations 1 and 2 (Table1). For the ARIMA(1,2,1) model, it is important to note that 
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 --- confirming that the model is identifiable.

Table 1: Estimated coefficients for the ARIMA(1,2,1) (left) and ARIMA(0,2,1) (right) models. Note that the ARIMA(1,2,1) model has a lower residual variance while the ARIMA(0,2,1) has a lower AIC score.

	ARIMA (1, 2, 1)
	ARIMA (0, 2, 1)

	Source
	Coef.
	Est.
	S.E.
	Source
	Coef.
	Est.
	S.E.

	AR(1)
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	-0.0529
	0.0620
	
	
	
	

	MA(1)
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	0.8499
	0.0273
	MA(1)
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	0.8595
	0.0234

	MSE
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	0.3858
	
	MSE
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	0.3868
	

	Criterion
	AIC
	599.43
	
	Criterion
	AIC
	598.15
	


Model Diagnostic

    After fitting such models, we need to check whether the models are appropriate. The Box-Pierce (and Ljung-Box) test examines the null hypothesis of independently distributed residuals. It’s derived from the idea that the residuals of a “correctly specified” model are independently distributed. If the residuals are not, then they come from a miss-specified model.

    The Q-statistics and p-values for those two models are listed below.

Table 2: Q-statistics and p-values of Models

	Model
	Q-Statistic
	p-value
	DF

	ARIMA (1, 2, 1)
	16.184
	0.7051
	20

	ARIMA (0, 2, 1)
	15.3531
	0.7559
	20


    From the table, we can see that both p-values are greater than 5% critical level which means we have strong evidence to accept the null hypothesis that the residuals are independently distributed, i.e., the models fit the data well.

    Also I looked at the diagnostic plots of two models. From the plots, we can obtain the following conclusions:

1) The residuals plots from the fitted models are randomly scattered about zero. 

2) The ACFs of residuals show that all correlations fall inside the 95% confidence bounds

    indicating that the residuals appear to be random.

3) The Box-Ljung statistics for lags 1-10 confirms that no such patterns exist and that none

    of the lags are significant.

    Overall, both models are adequate.

Figure 5: Diagnostic plots of model ARIMA(1,2,1)
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Figure 6: Diagnostic plots of model ARIMA(0,2,1)
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Forecasting

    With the model fitted, I made 24 months forecasts for the two models. Actual data and forecasts with 95% confidence interval lower and upper bounds are shown in Table 3.

     From the Table 3 and Figure 7, we can see that the first several forecasts are very close to the actual data. Compare the forecasts from two models, ARIMA(0,2,1) is a little bit better than ARIMA(1,2,1).
Table 3: Forecasts and 95% Confidence Intervals of next 24 points.

	
	
	ARIMA(1,2,1)
	ARIMA(0,2,1)

	
	
	95% C.I.
	
	
	95% C. I.

	Step
	Actual
	Forecast
	Lower
	Upper
	Forecast
	Lower
	Upper

	05/2004
	437.10
	437.68
	436.46
	438.89
	437.65
	436.43
	438.87

	06/2004
	439.60
	440.74
	438.93
	442.55
	440.70
	438.85
	442.55

	07/2004
	442.60
	443.80
	441.45
	446.16
	443.75
	441.33
	446.17

	08/2004
	446.30
	446.87
	443.97
	449.76
	446.80
	443.82
	449.77

	09/2004
	450.40
	449.93
	446.49
	453.37
	449.85
	446.31
	453.38

	10/2004
	452.60
	452.99
	448.99
	456.99
	452.89
	448.80
	456.99

	11/2004
	455.50
	456.05
	451.49
	460.62
	455.94
	451.27
	460.62

	12/2004
	458.30
	459.12
	453.97
	464.27
	458.99
	453.73
	464.25

	01/2005
	460.40
	462.18
	456.43
	467.93
	462.04
	456.18
	467.91

	02/2005
	463.20
	465.24
	458.88
	471.60
	465.09
	458.61
	471.57

	03/2005
	466.00
	468.31
	461.31
	475.30
	468.14
	461.03
	475.25

	04/2005
	468.90
	471.37
	463.73
	479.01
	471.19
	463.43
	478.95

	05/2005
	472.20
	474.43
	466.13
	482.73
	474.24
	465.82
	482.66

	06/2005
	475.10
	477.49
	468.52
	486.47
	477.29
	468.19
	486.39

	07/2005
	477.50
	480.56
	470.89
	490.23
	480.34
	470.54
	490.13

	08/2005
	479.00
	483.62
	473.24
	494.00
	483.38
	472.89
	493.88

	09/2005
	481.10
	486.68
	475.58
	497.78
	486.43
	475.21
	497.65

	10/2005
	483.00
	489.75
	477.91
	501.59
	489.48
	477.53
	501.44

	11/2005
	485.70
	492.81
	480.22
	505.40
	492.53
	479.82
	505.24

	12/2005
	488.60
	495.87
	482.51
	509.23
	495.58
	482.11
	509.05

	01/2006
	491.50
	498.93
	484.80
	513.08
	498.63
	484.38
	512.88

	02/2006
	493.50
	502.00
	487.06
	516.93
	501.68
	486.64
	516.72

	03/2006
	496.50
	505.06
	489.32
	520.81
	504.73
	488.88
	520.57

	04/2006
	499.80
	508.12
	491.56
	524.69
	507.78
	491.11
	524.44


Figure 7: The Forecasts for the ARIMA(1,2,1) (left) and ARIMA(0,2,1) (right) models. [image: image17.png]V1
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Appendix: R code

#CPI College Tuition

data <- read.table("F:/Personal/ts/Project/a.txt")

data1 <- data[1:316,] #in-sample

data2 <- data[317:340,] #out-of-sample

CPI <- ts(data,start=c(1978,1),frequency=12)

CPI1 <- ts(data1, start=c(1978,1), frequency=12) #in-sample

CPI2 <- ts(data2, start=c(2004,5), frequency=12) #out-of-sample

#time series plot, acf and pacf

par(mfrow=c(2,2))

ts.plot(CPI1, main="Time Series of CPI", gpars=list(xlab="Year", ylab="CPI"))

acf(CPI1)

pacf(CPI1)

#logarithm transformation

par(mfrow=c(2,1))

logCPI1 <- log(CPI1)

logCPI1 <- ts(logCPI1, start=c(1978,1), frequency=12) #in-sample

ts.plot(Rate1, main="Time Series of Log CPI", gpars=list(xlab="Year", ylab="CPI"))

hist(logCPI1)

#First differencing

dCPI1 <- diff(CPI1)

par(mfrow=c(2,2))

ts.plot(dCPI1,main="First Differenced Series of CPI", gpars=list(xlab="Year", ylab="CPI"))

acf(dCPI1)

pacf(dCPI1)

#Second differencing

ddCPI1 <- diff(dCPI1)

par(mfrow=c(2,2))

ts.plot(ddCPI1,main="Second Differenced Series of CPI", gpars=list(xlab="Year", ylab="CPI"))

acf(ddCPI1)

pacf(ddCPI1)

#Model fitting

mod1 <- arima(CPI1, order=c(1,2,1),method="ML")

mod1

mod2 <- arima(CPI1, order=c(0,2,1),method="ML")

mod2

#Model diagnostic

Box.test(mod1$residuals, lag=20)

tsdiag(mod1)

Box.test(mod2$residuals, lag=20)

tsdiag(mod2)

#Forecasting the next 24 data points

CPI.pred <- predict(mod1,n.ahead=24)

pred <- ts(CPI.pred$pred, start=c(2004,5), frequency=12) 

se <- ts(CPI.pred$se, start=c(2004,5), frequency=12) 

par(mfrow=c(1,1))

plot(CPI, main="Forecast the Next 24 Points")

lines(pred,col="red")

lines(pred+1.96*se,col="red",lty=3)

lines(pred-1.96*se,col="red",lty=3)

pred <- cbind(CPI.pred$pred, CPI.pred$pred+1.96*CPI.pred$se, CPI.pred$pred-1.96*CPI.pred$se)
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