Time Series Project Summer 2007

Construction of an NFL Team’s Won-Loss Record

Introduction

Every year sports fans and gamblers alike attempt to predict how certain sports franchises will do before the season even begins.  This paper will attempt to create a time series doing just that, for the National Football League team the Washington Redskins.  In reality such a task is rather difficult considering all the variables involved in a team’s success, but this paper will examine the steps needed to create an appropriate time series given past data.

The Autocorrelation Function

We have data on the winning percentage for the Washington Redskins from 1933 to 2005, or 73 years.  This can be found on the data tab of the accompanying spreadsheet along with the sample autocorrelations.  The most recent data from 2000 – 2005 has been omitted from the analysis so that we can use it for ex-post forecasting in testing the accuracy of our model.  The three charts below summarize the data:
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Sample Autocorrelations Lags 1 - 10
	Lag
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	Corr
	0.5022
	0.3625
	0.2985
	0.1872
	0.1689
	0.0833
	0.0449
	0.0386
	0.0431
	-0.0183


As you can see the initial time series appears to be stationary.  First, the sample autocorrelation function declines rapidly to zero.  Using Bartlett’s test we would expect the standard deviation using our 68 observations to be roughly .121 (1/√(68)).  We are within two standard deviations after 4 lags and within one after 6 lags.  
In addition, our autocorrelations do not appear to be a purely moving average (MA) process either.  If our model were MA we would expect our autocorrelations to drop immediately to zero as opposed to the geometric-like decrease we see above.  Based on these we can rule out the possibility that our model is a purely MA series.

It is possible, however, that the most appropriate model is an autoregressive-moving average model (ARMA).  We will examine the possibility of an ARMA (1,1) model, though because the textbook does not give us formulas with greater values of (p,q) those models will not be studied.  Finally, because our series is stationary we will assume that d=0 and consequently there is no reason to take first differences.

Choosing the appropriate AR model
We will now regress our data on winning percentages examining the following models: AR(1), AR(2), AR(3), AR(4), and AR(5) to determine which is the most appropriate for our situation.  This data can be found in columns W through AE on the ‘Data’ tab of the accompanying worksheet.  The results are summarized below with Wt  being the winning percentage at time t.
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It is clear from the above data that the AR(4) and AR(5) models are not appropriate.  While the AR(4) model showed a slight increase in the adjusted r-squared value, the negative coefficient at lag 4 and the high t/low p-values indicate the model isn’t a great fit.  The same goes for the AR(5) model, not to mention the decrease in the value of adjusted R2.  AR(3) is a bit more ambiguous and is more of a judgment call.  We will omit the AR(3) during our analysis due to the minimal value added on adjusted R2 and the relatively low t values and high p-values.  

Finally, let us verify our coefficients for the AR(1) and AR(2) models using the Yule-Walker equation to make sure they are in sync with the sample autocorrelations we calculated above.  We can easily see that coefficient of lag 1 in our AR(1) model is appropriate as it matches our value for our sample autocorrelation.  For AR(2) we can calculate the values of Ф1 and Ф2 by simultaneously solving the equations below:
ρ1 = Ф1 / (1 - Ф2)

ρ2 = Ф2 + (Ф12 / (1 - Ф2) )

Solving these we get values of Ф1 = .428 and Ф2 = .148, using our values of ρ1=.5022 and ρ2=.3625.  This tells us our coefficients are appropriate.
The ARMA (1,1) Model

Similarly, we will calculate our coefficients for the ARMA (1,1) model by solving the equations below using the sample autocorrelations we have already determined:

ρ1 = (1 - Ф1Ө1)(Ф1 - Ө1) / (1 + Ө12 - 2 Ф1Ө1)  

ρ2 = Ф1ρ1

Solving these we get:

Ф1 = .722 and Ө1 = .4253

Finally, we will solve for delta using the equation:

μ = δ / (1 - Ф1)

Although our sample mean was .5307 our delta was calculated using a mean of .50 under the assumption that in the long-run all teams should have a 50% winning percentage.  Using these assumptions we get a value of δ = .139.  This leaves us with the following equation:
Wt 
= 
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+
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[ARMA(1,1)]
Analysis of autocorrelations

Next we will determine the correlations for each of our models using the following equations from the textbook:

ρk = (Ф1)k for all k                         [AR(1) model]
ρk = Ф1ρk-1 + Ф2ρk-2  (k > 2)          [AR(2) model]
ρk = Ф1ρk-1       (k > 2)                            [ARMA(1,1) model]


Our results are summarized below:

	Lag
	Sample AC
	AR(1)
	AR(2)
	ARMA(1,1)

	1
	0.502404292
	0.502404
	0.501934
	0.502217935

	2
	0.363392893
	0.25241
	0.36249
	0.362507249

	3
	0.306283817
	0.126812
	0.229235
	0.261662311

	4
	0.192105297
	0.063711
	0.151627
	0.188871161

	5
	0.174868303
	0.032009
	0.098737
	0.13632959

	6
	0.086878295
	0.016081
	0.064643
	0.09840442

	7
	0.049627009
	0.008079
	0.042243
	0.071029553

	8
	0.046741422
	0.004059
	0.027623
	0.051270029

	9
	0.051858977
	0.002039
	0.018059
	0.037007354

	10
	-0.01844293
	0.001025
	0.011807
	0.026712376

	Sum of squared differences
	
	0.092843
	0.016344
	0.006358591

	
	
	
	
	


It appears that our ARMA (1,1) model is our best fit using this data followed closely by the AR (2) model.  It is worth noting that our first two autocorrelations for the ARMA (1,1) model were calculated using our pre-determined autocorrelations.  There does appear to be a striking difference between the AR(1) model and our other two models.
The Durbin-Watson Statistic
Next we will examine the residuals of each of our models in another reasonability test to determine the best model.  We would hope to see residuals that are uncorrelated with each other which would indicate a white noise process.  To test our autocorrelations we will utilize the Durbin-Watson (DW) statistic.  The closer the DW statistic is to 2.0 the less serial correlation exists between the residuals.  Below is the formula for the DW statistic along with our calculated values:

 T
 T
D-W  = (
∑ (εt - εt-1)2 ) / (
∑ εt2 )

t=2
t=1
AR(1): 1.77 

AR(2):  1.83 

ARMA(1,1): 2.08

Again, our ARMA (1,1) model appears to be the best.  Nonetheless, our AR models are close enough to 2.0 that we cannot reject the hypothesis that there is no serial correlation for them either.

The Box-Pierce Q Statistic
The next tool we will use to analyze our models is the Box-Pierce Q Statistic.  This statistic analyzes the residuals of our models with low values of the statistic indicating a white noise process.  The Q statistic is distributed on a X2 distribution with K-p-q degrees of freedom, with p and q being our model parameters.   Below are our formulas:
rk = (
∑ εt εt-k ) / (
∑ εt2 )

 t
  t

 K

Q  = T
∑  rk2    


k=1

Here T equals the number of observations in our sample.  It is often argued what the appropriate value of K is so for our analysis we studied the statistic for K = The Q-statistic for our models was calculated for K = 5, 10, and 20 based on our 68 observations.  Below are our findings:
	K
	AR (1) Stat
	AR (2) Stat
	ARMA (1,1) Stat
	Chi-square critical value at 10% significance (K-1 degrees)
	Chi-square critical value at 10% significance (K-2 degrees)

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	5
	3.057133
	1.259485971
	2.373051
	7.78
	6.25

	10
	3.512857
	1.912825406
	2.958162
	14.68
	13.36

	20
	9.271444
	6.933875681
	7.687538
	27.2
	25.99


It is apparent that we are well below the critical value regardless of which value of K we choose.

Analysis of the Error Sum of Squares (ESS)
The last step before checking our ex-post forecasts will be to analyze our ESS for each model to judge which provides us the closest fit based on our sample data and fitted values.  Below are the various ESS:

	Model
	ESS

	AR1
	1.865686

	AR2
	1.825196

	ARMA (1,1)
	1.861488


Here our AR(2) model appears to be the best fit rather than our ARMA (1,1) model.  The AR(1) and ARMA (2) models are very similar here.
Ex-post Forecasting

Our final task is to check our ex-post forecasts for each model to see how close we came to the actual values.  For our ARMA(1,1) model we assumed the residual was 0 in 1933 (our first data point) and backed into the residuals in future years using that value.  Below are the actual winning percentages for the Redskins between 2000 – 2005 along with our forecasted values.

	Year
	Actual
	AR(1)
	AR(2)
	ARMA (1,1)

	2005
	0.625
	0.453
	0.433
	0.436

	2004
	0.375
	0.421
	0.424
	0.437

	2003
	0.3125
	0.484
	0.487
	0.483

	2002
	0.4375
	0.515
	0.514
	0.504

	2001
	0.5
	0.515
	0.532
	0.509

	ESS of forecast
	N/A
	0.068
	0.077
	0.073

	
	
	
	
	


Unfortunately, the ESS of our forecasts stands in direct contrast to all of our other reasonability checks in that the AR(1) model has the closest fit.  Based on our tests we would have expected to have the ARMA (1,1) model to come in the closest.

Conclusion

Unfortunately, all of our models failed to produce accurate results when compared to the actual values between 2000 – 2005.  Indeed, the model that came the closest was the very one we would have expected to have the largest error!  This is to show just how difficult it is to forecast accurate results of sports teams due to the number of variables involved.  Teams may have good/bad drafts, injuries, suspensions, etc. – all of which are nearly impossible to model.  

The only conclusions we were able to come to with any certainty were that winning percentages are indeed stationary, winning percentage should not be modeled under a purely moving average model, and the residuals of our model tend to follow a white noise process from year to year.  Perhaps a more complex ARMA model would provide us with more accurate results but it is difficult to imagine that we would be able to create a model that we would feel comfortable believing.
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