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The postings on the discussion forums provide guidance for your student project. We
describe what each posting covers, and we suggest an order for your initial review.

The student projects are independent projects. The NEAS web site has hundreds of data
sets and various project templates that you may use for the student project. You may use
any time series with enough observations, as long as it is not a random walk or white noise.

This posting is a step-by-step guide to ARIMA modeling. Separate postings

explain the requirements for the student project and the learning objectives
outline the written documentation that accompanies the statistical work
review the statistical techniques for student projects on time series analysis
compare common ARIMA processes and suggest which ones to explore
document the illustrative worksheets for the project template on interest rates
clarify the balance between faculty guidance and independent work

answer questions from candidates about the time series student projects

The instructions summarizes questions and answers in past semesters. They provide more
guidance than most candidates need. You have wide latitude: you may choose the data,
topics, and statistical procedures, and write a student project that differs from the project
templates on the discussion forums.

Your student project applies statistical techniques to real data. It is not a full statistical
study to select the optimal ARIMA model. You need not compare all ARIMA processes or
test all structural models. We review if your project properly uses modeling techniques, not
if your solution is optimal.

This posting is discursive. It discusses each step with many examples. It refers to other
discussion forum postings for further explanation. It is not a cookbook to a rigid sequence
of statistical techniques

Some candidates want to know an exact order for the student project, and they are
frustrated by the subjectivity of ARIMA modeling. As the course textbook says, ARIMA
modeling is a second-best alternative. We search for patterns in the data. We don’t find
the true causes of the time series patterns, but the ARIMA pattern helps our forecasts.

Your student project is successful if it sheds light on the pattern over time of the data. Read
the suggestions in this step-by-step guide and apply them to your time series.



ARIMA MODELING
Chapter 19 of the textbook has five examples of ARIMA models. The text assumes you

e are familiar with nonlinear regression and partial autocorrelation functions
® have the needed statistical software
e understand well the time series that you are modeling.

The text gives an outline of ARIMA models: specification, diagnosis, and validation.
The time series on-line course assumes

® you know linear regression and sample autocorrelation functions
® you have Excel, but not other statistical software
® you have not worked with the data except for the student project

The ARIMA models for the student project can be built with basic Excel functions. The
illustrative work-sheets on the discussion forum provide code for the statistical techniques.
If you understand the concepts, you can complete the student project without difficulty.

This step-by-step guide to building ARIMA models is geared to candidates who have taken
the time series on-line course but who have never worked with ARIMA models.

~ We use plain language for most of the explanation.
~ When we use a statistical procedure, we explain the steps you need.

A step-by-step guide is not a cookbook. You make decisions at each step. We give enough
guidance that you won'’t get stuck, but you form the model.

® \We do specify exactly what to do at each step. The empirical data are stochastic, and
they do not fit any model exactly. Differences from the model may reflect random
fluctuation or a poor model.

e \We explain what to consider at each step. Your analysis depends on the empirical
relations and your statistical judgment.

The student project is an educational process, not a consulting job.

e \Working through the techniques helps you learn them.
® \We examine if you can apply techniques to actual data, not if your solution is correct.

Read this step-by-step guide when you begin the ARIMA modeling part of the time series
course, so you know the techniques you must master.

lllustration: The Box-Pierce Q statistic seems vague in the textbook, but it is a basic tool
to validate ARIMA models. Validation is subjective, since ARIMA models rarely fit the data



exactly. The student project uses the Box-Pierce Q statistic, Bartlett’s test, intuition, and
parsimony to select an ARIMA model.

See also: The illustrative work-sheets provide templates for correlograms, Durbin-Watson
statistic, Box-Pierce Q statistic, Yule-Walker equations, and statistical tools. You need not
have statistical software or Excel expertise to complete the student project.

Take heed: Statisticians differ in their approaches.

® The text uses complex ARIMA processes, often with six to eight parameters.
e For the student project, use simpler processes, with two or three parameters.

The project demonstrates that you understand the concepts, not that you can forma model
with many parameters.



Step #1: KNOWLEDGE
The student project assumes you know time series analysis and regression techniques.

o ARIMA modeling seems complex at first, but the modeling sequence is logical.
® Each step requires a decision; a limited set of decisions leads to many combinations.

Below are topics in the time series on-line course that are used in the student project.

-_—

. |ldentify stationary time series. Most time series that actuaries use are homogeneous
non-stationary. A time series with a trend or drift, or a random walk even with no drift,
is not stationary. Examine the correlogram, check for unit roots, and graph your results.

2. Form a stationary time series: take first differences, using logarithms if appropriate;
divide the time series into periods; and correct for seasonality.

3. The autocorrelation function of an ARIMA process is not the sample autocorrelation
function of a time series. Use the sample autocorrelation function to specify the model
and the autocorrelation function to validate the model.

4. The textbook discusses partial autocorrelation functions as well. You do not have the
statistical software for the partial autocorrelation function, and the discussion in the text
is weak. You need not use the partial autocorrelation function for the student project.

5. The pattern of the correlogram reflects the type of ARIMA process. Focus on geometric
decay vs sudden drops. Low ARIMA parameters and high standard errors of short time
series obscure the pattern. A correlogram is hard to analyze if stochasticity is high. If
a pattern is not obvious, explain the pros and cons of alternative models. We judge if
you understand the reasoning, not if you choose the optimal model

6. Understand the intuition for moving average vs autoregressive models. Much practical
statistical work is subjective. A non-intuitive ARIMA process with good in-sample fits
may have poor out-of-sample results. Explain in lay terms what each parameterimplies.

7. Chapter 19 builds ARIMA models for several time series. The student project does the

same with less complex time series and ARIMA processes.

As you work through your project, review the course modules for these topics.



Step #2: TooLs

You need statistical software for the student project. The illustrative Excel worksheets

Have cell formulas and examples for statistical functions not built into Excel.
Have VBA macros and custom functions that simplify your work.

The items below are provided on the illustrative work-sheets.

Sample autocorrelation function: Excel has a corrEL built-in function but no built-in
function for the sample autocorrelation. Anillustrative worksheet explains the difference
and gives the cell formulas, using the Excel sumproDUCT and OFFSET built-in functions.
The sumproDUCT with OFFSET is slow for large time series, such as 40,000 or 50,000
days. We provide a VBA macro that is quicker and simpler.

Correlogram: Use the chart wizard to construct correlograms. Label your axes so our
faculty can review your work. Copy and paste the correlograms into your write-up.
Durbin-Watson statistic is taught in the regression analysis course and used in the time
series student projects. An illustrative worksheet gives you the code.

Use the Box-Pierce Q statistic to test the model, using the sample cell formulas in the
illustrative worksheet. Compare the Q statistic with the critical values for the x-squared
distribution, using Excel’s built-in function or the tables in the textbook.

Use linear regression to form autoregressive models. Use the Excel REGRESSION add-in
and use the residual output for the Box-Pierce Q statistic.

Take heed: We explain the code in the illustrative worksheets and the rationale for each
procedure. You may copy the cell formulas from the illustrative worksheets.

The cellformulas in the illustrative worksheets are simple. Experienced Excel users will find
SoLVER and VBA to be more efficient tools. Nothing in the student project requires more
advanced Excel knowledge than in the simple cell formulas.

Your write-up states the results in your worksheet. Our faculty can not figure out what you
have done from the Excel workbook alone. State the techniques you use and the results.
Explain what the results imply and how you test them for significance (when appropriate).

You can use any statistical software or any spread-sheet package. If you use SAS at work,
you can save time by using it for the student project. If you know VBA and Excel built-in
functions, they can save you time as well.

SAS, MINITAB, and “R” have all the built-in functions you might use in a student project.
You may use these software packages; they are not required.



Step #3: CHOOSE THE TIME SERIES

You can use any time series you want. We show ARIMA models for interest rates and
daily temperature, and structural models for various macroeconomic indices.

Many project templates suggest a variety of student projects. Use the project templates to
generate ideas for your own student project.

Choose a topic that interests you. The web has dozens of sites with statistics on almost
any topic.

e If climate change intrigues you, do a project on daily temperature or rainfall.
e If you are a sports fan, do a project on won-loss ratios of your home team.
e If you like music, do a project on monthly DVD sales by genre.

We suggest numerous topics for your student project.

lllustration: Interest rates have a hundred flavors. We show sample work with 90 day
Treasury bill rates, and extracts from student projects on other rates. You can choose

e short rates (three month bills, over-night rates) vs long rates (twenty year bonds).

e private rates (Moody’s corporate bond index, the bank prime rate) or government rates
(Treasury securities, bank discount rates).

® spot rates, forward rates, futures rates, or other derivatives.

e nominal interest rates or real interest rates (structural models)

The type of rate should reflect the analysis.

® Forinterest rate seasonality, use short rates, not long rates, such as over-night LIBOR.
® For the relation of interest rates and budget deficits, use real interest rates.
® For the relation of interest rates and recessions, use corporate spreads.

The NEAS discussion forum has many interest rate time series. Read the project templates
and the other discussion forum postings. Feel free to choose another type of rate, such as
risk-free rates in other currencies.

Take heed: It is often easier to model real interest rates, the residuals of interest rates on
inflation rates, corporate spreads, or the spread between long and short rates with ARIMA
processes. Spend an extra half hour setting up the data; you save hours in your analysis.

Suggestion: You read dozens of theories about interest rates and other macroeconomic
indices: real interest rates are higher or lower in recessions, higher or lower when the U.S.
runs a deficit vs a surplus, and so forth. Choose a hypothesis, form a structural model, and
fit an ARIMA process to the residuals.






Step #4: STRUCTURAL vs TIME SERIES MODELS

If the time series is a by-product of clear and easily accessible causes, we use regression
analysis. For a stochastic time series with its own internal logic, we use ARIMA models.

lllustration: Unemployment rates depend on economic, demographic, and legislation, such
as hiring practices, restraints on firing, unemployment benefits, and minimum wages.

e |f the legislature raises the minimum wage, teen-age employment drops.

e |If the state raises unemployment benefits or mandates employer provided health
insurance, unemployment rises.

® During recessions, unemployment rises.

The macroeconomics on-line course reviews these effects. Barro’s textbook is an excellent
source of ideas for time series and regression analysis student projects. Government web
sites have extensive data on economic variables.

Take heed: The residuals from structural models are easier to fit with ARIMA processes,
and the time series are more meaningful.

We use regression analysis if the explanatory factors change frequently. We use ARIMA
models for the residuals of the regression.

lllustration: Inflation rates affect interest rates. We may regress interest rates on inflation
and use an ARIMA model to forecast the residuals. We provide both interest rates and
inflation rates on the web site so you can model either nominal interest rates or real interest
rates. Chapter 19 of the textbook has a similar example.

Take heed: Many macroeconomic indices are functions of other indices. Use differences,
periods, or structural models.

lllustration: Nominal interest rates are a function of inflation. Inflation is not mean reverting,
so nominal interest rates are not stationary. Using first differences and dividing the time
series into periods creates stationary time series, but your student project will be better if
you use real interest rates and adjust for economic activity.

lllustration: Suppose you want to model interest rates.

e Divide the one month LIBOR by the CPI for the previous period to get the real LIBOR.
® Real GDP is the detrended GDP.

® Regress the one month LIBOR on real GDP.

Your student project may show a sequence of models.



® Fit nominal interest rates by taking first differences. Use the mean squared error over
the next 12 months to estimate goodness-of-fit.

® Convert to real interest rates and fit a new ARIMA process. It is more difficult to decide
if first differences are needed. Re-compute the mean squared error.

® Use a regression on real GDP.

Your student project may explain the advantages and drawbacks of a structural model. You
may have a good model of real interest rates, but if you don’t know future inflation and real
GDP, you can’t forecast future interest rates.

You may determine real interest rates three ways:

e Rate A minus Rate B.
e Rate A divided by Rate B.
® Rate A regressed on rate B.

The regression is the best procedure, since it combines additive and multiplicative models.
The REGRESSION add-in does the regression and gives the residuals. But you can use any
of the three methods.

The regression can be done using different inflation rates as the explanatory variable.
Choose one and explain the rationale. This is a statistics course, not an economics course.
You are not graded on the choice of the inflation rate.

We use residuals for real interest rates, maturity spreads, and corporate spreads. The
definitions below use Rate A minus Rate B, but you can use any of the definitions above.

® Real interest rate = nominal interest rate minus expected inflation.
® Maturity spread = long risk-free rate minus short risk-free rate.
e Corporate spread = corporate bond rate minus Treasury bond rate.

The NEAS web site has many time series in Excel format. Form the time series you want.
Use simplifications, even if they are not perfectly accurate.

lllustration: Use last month’s actual inflation as a proxy for expected inflation. The ratio of
the CPI in the two previous months as the expected inflation for the current month.

Don’t worry that your time series is not perfect. Construct the time series you want and fit
an ARIMA process. But be consistent. To analyze corporate spreads, use the average rate
in each month, or the corporate bond rate at the start or middle of each month.

Take heed: Do not worry that a time series on the residuals of a regression is too complex
for the student project. The opposite is true. Many macroeconomic and demographic time
series are too complex to fit with an ARIMA process. The residuals of a regression analysis
are easier to fit, and they are more likely to have an intuitive relation.



The project templates discuss structural model for many of the time series on the NEAS
discussion forum. For some models, you must find an appropriate explanatory variable on
the internet. Spend half an hour or an hour looking for time series on the internet that fit
the hypothesis you want to examine. We do not grade your success in finding the right
explanatory variables for a structural model.



Step #5: TIME PERIODS

We fit an ARIMA process to model a time series over a given period. If the mean, drift, or
variance of the time series changes because of external causes, we use different models
for the different parts of the time series. Statisticians speak of interventions, or exogenous
events that change the ARIMA process.

e [fchangesin the time series are random fluctuations, we use a single process to model
the underlying structure. If we change models each year, we can’t forecast future rates.

e |f the time series itself changes, we need separate models. Forcing a single model to
cover all years gives an ARIMA model that is does not fit well in any period.

Atime series may follow different ARIMA process in different periods. If exogenous factors
change the mean, variance, or drift of the time series, the time series is not stationary and
can not be modeled by a single ARIMA process. Examples:

® \We model an insurer’s premium volume in 1985 - 2005. For 1985 - 1995, the insurer
has a monopoly; in 1996, the market becomes competitive. Premium volume may be
high when the insurer has a monopoly and lower when the insurer competes. The
variance of the premium volume may be low when the insurer has a monopoly and high
when it competes.

® \We model airline passenger volume before and after deregulation. Greater competition
and lower fares after deregulation raise the industry’s passenger volume. The variance
of any carrier's passenger volume increases: some new carriers rapidly gain market
share and some established carriers fail.

® \We model sales, profitability, and cash flow of firms differently in their start-up phases
and their mature phases.

e Oil prices have different time series for the pre-OPEC era (before 1973) and the OPEC
era (1973 onwards).

Interest rates have both types of changes.

~ Rates are stochastic, varying from month to month. The ARIMA process models these
fluctuations.

~ Federal Reserve Board policy (monetary policy), federal budget deficits (fiscal policy),
domestic and foreign capital investment, economic growth, and perhaps trade balances
affect the mean, drift, and variance of interest rates. An ARIMA process for the 1960’s
may not be a good model for the 1980’s.

It is not always easy to identify external causes. Even simple questions, such as warming
vs cooling of the earth, are much debated.

We use two methods of dividing a time series into periods:

® We examine the means, drifts, and variances of the time series itself.



e \We examine the exogenous events that might change the ARIMA process.

lllustration: An actuary examines a time series of personal auto written premium from 1980
to 2008. An acquisition of a personal auto subsidiary in 1995 writing in different states
changes the time series. We use separate models for 1980-1994 and 1996-2008.

Examine the time series you choose. You may divide it into two or three periods based on
the attributes of the time series, even if you have no explanation.

We don’t expect you to know post-World War Il Federal Reserve Board policy or other
events that affect interest rates. For the student project, examine the means, drifts, and
variances of the time series. Select periods that have reasonably stable attributes.

We provide some basic information about post-World War || Federal Reserve Board policy
to explain the differences observed in the time series. Just as actuaries examine policy
provisions, distribution systems, and market competition to set optimal rates, a statistician
should know the attributes of the time series to fit an ARIMA process. But the student
project focuses on the statistics, just as the SOA and CAS exams focus on the actuarial
procedures. You are not graded on your knowledge of economics.

® From the end of World War Il (1945) through the mid-1970’s, the U.S. economy
expanded briskly. Government officials worried about Depression-era deflation, not the
mild inflation of an expanding economy. Inflation was thought to be an antidote to
unemployment, which had been high during the Depression. The federal government
and the Federal Reserve Board believed that mild inflation was beneficial, in that it
restrained unemployment and did not hamper economic prosperity.

This presumed relation of inflation and unemployment was an error, but it was the
prevailing macroeconomic policy in the 1960’s and 1970’s. Interest rates had a steady
upward trend; the time series is not stationary.

® From the late 1970’s through early 1980’s, inflation and interest rates were high and
volatile, resulting from (i) the mistaken macroeconomic policies of these times and
perhaps (ii) the supply shocks of OPEC oil price increases.

® Paul Volcker, who became chairman of the FED in 1981, adopted a monetarist
perspective (Milton Friedman’s views). The money supply grew at a steady, slow rate.
Interest rates and inflation rates declined steadily (downward drift). Greenspan
continued Volcker's policies. The interest rate patterns in the first and second periods
should not recur if the FED continues a monetarist policy.

No single ARIMA process is an appropriate model for all three periods. For the first part
of the student project, you select appropriate periods.

® Global daily temperature has long periods (thousands of years). We have had ice ages
and warm eras; different models are appropriate for each. A student project on daily



temperature over the past 130 years may examine if a trend exists and if the trend rate
has changed. Many web sites on global warming have information about changes in
the daily temperature. A student project may compare the daily temperature time series
in a period of no trend vs a period of trend.

e |f the time series is unemployment rates, the time periods depend on legislation for
hiring practices, restraints on firings, unemployment benefits, and minimum wages.
U.S. law stayed relatively constant over the past fifty years; European law provided
increasing liberal benefits. You might compare U.S. and European unemployment.

® Interest and inflation rates depend on monetary and fiscal policies. In Europe, policies
changed with entry into the European Union. Use European, Asian, or Latin American
rates to make your student project different.

We use separate models for each period; we don’t take differences are use a single model.
We use two or three interest rate eras because of different Federal Reserve Board policies.

For the student project, you can rely on internal characteristics of the time series. Inspect
the graphs for the time series and choose the time periods. We show illustrative graphs
for three interest rate periods:

® Period 1: January 1945 — December 1978
® Period 2: January 1979 — December 1982
® Period 3: January 1983 — June 2000

These are illustrative periods. For your project, examine the data and choose periods.

The periods need not be contiguous. You can leave gaps. You can choose January 1945
— December 1978 as Period 1 and July 1979 — June 1982 as Period 2. This leaves an 18
month gap between the periods. During the gap, policies are changing, and no ARIMA
process may properly model interest rates.

If the drift is steady for several years and then reverses for several years, a single ARIMA
process doesn’t work. Taking second differences is not proper, since the first differences
form stationary time series in adjoining periods. Instead, you can

® Use separate ARIMA processes for the two periods.
® Form real interest rates and see if a single ARIMA process works for both periods.

The second method is a structural model: form a regression and use the ARIMA process
on the residuals. Use this method if an exogenous factor affects the time series.

Take heed: Shifts in daily temperature are not well understood.

A shiftin the mean suggests an exogenous intervention. Unemployment rates may be 6%
for several decades followed by a rise to 11% for a decade, as in France and Germany.
The cause may be higher unemployment benefits and restrictions on work terminations.
Unemployment rates have since declined in Europe, and you may have three periods.



The discussion board graphs three month Treasury bills and suggests rough interest rate
eras. For the student project, graph the time series and choose time periods.

® Do not just copy the three periods on the discussion board. Examine the graph of your
time series and explain whether two or more time periods are needed.

® A project comparing time periods may use two or more periods. A project fitting an
ARIMA process may focus on one period.

® You can leave gaps between periods or ignore some periods. A student project can
compare ARIMA processes for the first and third periods on the discussion board.

A time series with different means in different segments is not stationary. Separating the
time periods is necessary to create stationary time series, but it is generally not enough.
For several reasons, a time series may not be stationary.

® A time series with an upward or downward drift is not stationary. A moving average
graph of the time series reveals most drifts.
e A random walk (an autoregressive time series with a unit root) is not stationary.

* The graph doesn’t show whether the time series is a random walk.
* The correlogram shows sample autocorrelations that do not decline rapidly.
 Fitting an AR(1) process shows a [3 of about one (a unit root).

A time series can have a drift and also be a random walk. In both scenarios, we test for
stationarity and take first differences; see the later steps of this guide.

Take heed: As an alternative to first differences, you may detrend the time series. If daily
temperature increases 0.03% a year, detrend the time series.

ComMMON ERRORS

As you construct ARIMA models, check if periods are needed If you divide a time series
into two periods and the ARIMA process is similar for both, you don’t need two periods.

lllustration: Daily temperature may have cycles orlong-term trends, but the ARIMA process
may be similar to each period.

An unusual pattern in a correlogram may reflect a changing trend or drift. Suppose the
correlogram shows sample autocorrelations

® declining from 25% to zero over the first 20 lags
® declining from zero to —15% from lags 20 to 30
® rising back to zero by lag 40.

This pattern indicates two periods with different drifts. Many time series have this pattern.
Taking second differences to eliminate the pattern loses the information in the time series.



Second differences: First differences may remove stable trends in the time series. If the
first differences are not stationary, we have three alternatives:

e |f the trend is exponential, take logarithms and then first differences. Do not take
second differences instead of logarithms. The resulting process is not stationary, but
it might seem stationary because the trend is small.

e |[fthe first differences have a stable trend, take second differences. Thisis uncommon.
See if you can explain why this occurs.

lllustration: If we invest $1,000 in a common stock portfolio, the value of the portfolio is a
non-stationary random walk. Taking logarithms and first differences creates a stationary
time series. If we invest $1,000 in a common stock portfolio each month, we take first
differences, subtract $1,000, then logarithms, and then second differences.

® Graph the first differences. If the graph shows different means by period, we separate
into two time periods. If one part of the time series has an upward trend and another
part has a downward trend, taking first differences may not make it stationary.

lllustration: If the time series is {1, 2, ..., 99, 100, 99, 98, ..., 2, 1}, the first differences are
{+1,+1, ..., +1,+1, -1, -1, ..., -1, -1}. The first differences have a mean of +1 in the first
half of the time series and —1 in the second half. This is not a stationary process.

Be careful about taking second differences. If the time series comprises two eras with
different means, variances, or drifts, taking higher order differences to make a stationary
series obscures the true relation. If different models are appropriate for one part of a time
series versus another, taking first and second differences obscures the problem.

Recommendation: Comparing two eras of a time series makes a good student project.
Divide the time series into two parts and fit two ARIMA processes. An intuitive break is
best, such as movie ticket sales before and after home DVD players. If the explanatory
variables are not obvious, separate the eras by their means, drifts, or variances.



Step #6: RoBusT MODELS

A robust model doesn’t change much if we make small changes in the scenario. Examine
if the periods chosen create robust models.

lllustration: If a 20 year period has a drift of +2% per annum, each 10 year sub-period
should have a drift of about 2% per annum. If the first ten years have a drift of +5% and
the second ten years have a drift of —1%, the overall drift of +2% is not meaningful.

lllustration: For a period of a few months and volatility of 0.1% a month, even a time series
with no drift may show a small drift. Do not mistake volatility for drift.

The three interest rate periods on the discussion forum illustrate this concept.

® The observed interest rate drifts are +0.02%, —0.03%, and —0.01% per month for the
three periods.
® The interest rate volatility is much higher in the second period.

A statistician would say that the first period has an upward drift, the second period is
volatile, and the third period has a downward drift.

® The drift in the first and third periods is stable. If we divide the periods in half, we get
the same drifts for each half.

® The second period is volatile and short. The absolute value of the drift is high, but it is
not robust. Changing the period by a few months changes the drift.

To measure the drift, consider also the volatility of the rates and the length of the period.

The +0.02% and —0.01% drifts in the first and third periods reflect FED policy. The —0.03%
drift in the middle period is an artifact of the short time period and the high volatility.



Step #7: SCALING, INTERVAL LENGTH, STOCHASTICITY, AND MOVING AVERAGES

Choose an appropriate interval length. Some time series specify the interval length. Others
allow you to choose the intervals. For stock prices, you may use daily, weekly, or monthly
intervals. One might reason: Shorter intervals give more observations.

~ A monthly Treasury bill rate give 12 observations a year.
~ A daily corporate bond index gives 242 to 250 observations a year (business days).

More data points increase the accuracy of the analysis, so a Box-Pierce Q statistic that is
not significant with 12 observations may be significant with 250 observations. Butintervals
that are too short hide the relations. Daily intervals may complicate the analysis.

lllustration: Take first differences of the interest rates and graph the results. The horizontal
axis is the month and the vertical axis is the change in the interest rate. The graph looks
like white noise. It is hard to see the upward or downward trends.

Monthly data in a stable series do not show the drifts well. The average monthly drifts are

® Period 1: +0.0215% =~ +0.02%
® Period 2: —-0.0283% =~ —0.03%
® Period 3: -0.0099% ~ —0.01%

The monthly drifts are too small to see, unless we use narrow markers for the vertical axis.
The annual drifts of 0.258%, —0.340%, and —0.119% are clear.

If we change just the scale of the vertical axis to use 0.01% as the marker, the interest rate
stochasticity overwhelms the drift. We must change the scale and use a 12 month moving
average to reduce the stochasticity. To observe the drift in your time series, examine

® a line graph of moving averages, which eliminates the stochasticity
e the 12 month first differences (the year to year change in the monthly rate)

Even monthly intervals are short. Monthly intervals give enough data to test hypotheses.
But monthly intervals might make a stationary time series seem like a random walk.

lllustration: Suppose annual interest rates are a stationary AR(1) time series with ¢, =80%
and 8 = 2%, so the mean interest rate is 2% / (1 — 80%) = 10%. Monthly interest rates
might have an AR(1) process with ¢, = 98% and d = 0.2%, so the mean interest rate is still
10%. Thislooks like a random walk, but it is not. Similarly, the daily corporate bond spread
looks like a random walk, but it is mean reverting process using longer periods.

If the interest rate per annum is 12% in January 20X7, the forecast for January 20X8 is
80% % 12% + 2% = 11.60%. Using the monthly model, we get



February 20X7: 98% *x 12% + .2% = 11.96%

Daily or weekly intervals of annual interest rates obscure the process. One time series on
the web site is daily values of the Moody’s 30 year corporate bond rate. A time series with
daily intervals obscures the process. You choose monthly values as the average value in
the month or as the first value in the month. The monthly time series is easier to work with.
With the monthly values, use the techniques in this guide to fit a model.

Take heed: The first steps are preparation for your analysis. Your write-up should explain
the periods and intervals. Show that you understand the change in the ARIMA process.

e If you choose a robust time series with proper periods and intervals, your ARIMA
analysis proceeds smoothly.
e If you don’t choose reasonable periods, you may waste much time in your analysis.

Take heed: Contrast overnight LIBOR and corporate bond spreads:

e Overnight LIBOR is a one day rate, and it changes rapidly; use daily periods.
® The corporate bond spread is a twenty year rate; use monthly periods.



Step #8: SEASONALITY

Examine your time series for seasonality, even if you do not expect seasonality. The write-
up should explain what you examined, what you found, and the adjustments you made.

e Daily temperature and rainfall have smooth seasonality.

e Children’s toys (high sales in December) or group health insurance, reinsurance, and
workers’ compensation (high sales in January) have strong, discrete seasonality.

e |f stochasticity obscures the seasonality in the graph, use monthly or quarterly averages
over several years. The hurricane season may not be clear in any one year, but a 20
year average by month shows the pattern. The textbook has several ways of identifying
seasonality, such as dividing monthly rates by a 12 month centered moving average.

® Correlograms identify even weak seasonality. GDP, unemployment rates, and inflation
have weak seasonality. Check the 12 month sample autocorrelations.

® The hypothesized relations must make sense. Don’t follow numbers blindly. A high
sample autocorrelation for a lag of 7 months is random fluctuation, not seasonality.

® Annual figures smooth seasonality. Daily and weekly rainfall is seasonal; semi-annual
rainfall may not be seasonal.

® Many macroeconomicindices are adjusted for seasonality. CPI (inflation indices), price
levels, unemployment rates, and Gross National Product are seasonally adjusted.

Take heed: If a time series has two peaks at opposite ends of the year, annual seasonality
may appear as semi-annual seasonality.

lllustration: A quarterly series may have positive autocorrelations at lags 2, 4, and 8, and
negative autocorrelations at lags 1 and 3. If the autocorrelation at lag 4 is greater than the
autocorrelation at lag 2, this is annual seasonality. An autoregressive parameter of lag 4
may correct all the autocorrelations.

We correct for seasonality several ways, depending on the time series:

® seasonally adjust the data
® use seasonal differences
® use a seasonal lag in the ARIMA model

lllustration: Youth unemployment is highest in the summer, when school is not in session.
Farm and construction work is high in the summer and low in the winter. We seasonally
adjust unemployment rates to identify trends, cycles, and other effects.

Seasonal adjustments are covered in the chapter on non-stochastic time series. They are
used whenever the value of a series depends on the time of the year, not the value of the
series one year back.

lllustration: Suppose we model daily temperature with an ARIMA process. We seasonally
adjust the data and then fit the ARIMA process. We don’t use a 365 day lag, and we don’t



model the year-to-year changes in the daily temperature. See the project template on daily
temperature for explanation. A student project may find the optimal method to seasonally
adjust the data.

® For seasonal items, such as textbooks, camping equipment, heating oil, and wedding
dresses, we examine growth by the year-to-year change in monthly sales.
e |f a figure depends on the value 12 months back, ARIMA seasonal lags are best.

lllustration: We model personal auto written premium by month for a direct writer. The
policy renewal rate is 90%, so the value 12 months ago is the proper base. We use
ARIMA models with a ¢,, of about 90%.

A student project on seasonality may have the following steps.
DaiLy AVERAGES
Examine average values by day of the year.

m [f interest rates have no trend or cycles, compute the average interest rate over the
entire period for each day of the year.

m [finterestrates have atrend or a cycle, simple averages conflate trend and seasonality.
Distinguish trend from seasonality:

e Compute 365 day centered moving averages. This eliminates seasonality and random
fluctuations, leaving trend and cycles.

® To eliminate trend, convert interest rates to their deviations from a 365 day centered
moving average.

Take heed: Overnight LIBOR shows business days only, or about 242 to 250 days a year.
Use a centered moving average of the 365 calendar days, which cover a variable number
of business days.

Take heed: Use the counTiF and sumiF built-in functions to compute daily averages. The
illustrative work-sheet for the project template on daily temperature uses these functions.

® |eap years cause an extra day every fourth year.
e Overlap of holidays with weekends may cause more business days some years.
® Missing values may cause fewer days.

Graph the moving averages. You see a decline followed by a rise in the overnight LIBOR
for the period on the discussion forum Excel work-book. A student project might examine
the relation of these movements to other macroeconomic indices. The centered moving
average smooths the trends.



Take heed: The daily temperature over the past 130 years may have weak trends or cycles
(depending on the weather station). See the project template on daily temperature for
methods of dealing with temperature trends.

Subtract the centered moving averages from the observed values. This eliminates trends
and cycles, leaving seasonality and fluctuations. Each observed value is a deviation from
the average in the surrounding year.

Compute long-term averages. This reduces the random fluctuation and leaves seasonality.

Take heed: Daily temperature has a high error term. The daily temperature may fluctuate
+20° because of unexpected weather. The daily temperature may be 30° one day and 65°
two days later. Even a 130 year average daily temperature shows random fluctuations.
Interest rates fluctuate less, and fluctuations are gradual. Graph the results as a line chart.

e If the line is smooth, the random fluctuations don’t distort the long-term averages.

e |f the line is jagged, replace each value by its centered moving average for 3 days or
5 days or 7 days or some other period. Use judgment to select the proper period. See
the project template for daily temperature for an example.

INTEREST RATES AND SEASONALITY

For interest rates, seasonality is much weaker now than in the past and may be seen only
in short rates. A student project using rates from the past few decades or rates with
durations of one year or more need not discuss seasonality.

Interest rates are seasonal because they depend on the supply and demand for money.

The demand for money varies over the year. It is high for holiday shopping and low in
January and February. If the money supply is held constant, interest rates are seasonal.

Eighty years ago, interest rates were seasonal. Now the Federal Reserve Board varies the
supply of money to offset the demand for money.

The Federal Reserve Board is not perfect, and some seasonality remains. See if overnight
LIBOR has any seasonality. You may examine whether a seasonal autoregressive term
improves the model for overnight LIBOR.

Overnight, one week, two week, and one month LIBOR might be seasonal. A rate for one
year or longer is not seasonal.

The graphs don’t show much seasonality even for short LIBOR rates. But the correlogram
may show a high 12 month sample autocorrelation. The pattern may be even clearer in
the first differences.



Recommendation: Decomposing LIBOR, insurance claim costs, and other actuarial items
into long-term trends, cycles, seasonality, and stochasticity makes a good student project
that can be valuable to your employer.

Take heed: If the time series is a random walk with weak mean reversion or seasonality,
the sample autocorrelations show a slow decline for the first 11 months and a slight spike
in the twelfth sample autocorrelation.

Stochasticity obscures weak seasonality. Annual seasonality may also cause high sample
autocorrelations at 6 months, which further disrupts the pattern. Use the correlogram for
the first differences to identify weak seasonality.

lllustration: The 1945-1978 period in the interest rates illustrative worksheet has a 17%
correlation for the 12 month lag and lower correlations for the other lags. We have 34 x 12
= 374 observations in the first period. We subtract 1 for the first differences and 12 for the
12 month lag to get 361 observations. A sample autocorrelation higher than 2 x 1/ 361
= 10.5% is significant at a 5% level. A 17% sample autocorrelation is significant; most
other sample autocorrelations are below 10.5% in absolute value.

Take heed: Don’t expect all other sample autocorrelations to be below the critical value.
By chance, one or two may be higher.

Many student projects use a correlogram, graph the sample autocorrelations, and conclude
that seasonality is not important. Always examine seasonality; you may be surprised.

lllustration: Many candidates are not aware that claim frequency and severity are seasonal
in many lines of business. Workers’ compensation, group health insurance, reinsurance,
are often written on January 1, so written premium is also seasonal.

If you find a significant 12 month sample autocorrelation, try an ARIMA(12,1,0) model: ¢,
and ¢,, are non-zero, and the other coefficients are zero. Estimate the parameters with
multiple linear regression.

If interest rates are a random walk with annual seasonality, we expect

® ¢,,is low for a non-seasonal product and high for a seasonal product.
® ¢, is low for a white noise process and high for a random walk.



Step #9: TRENDS
A time series with a trend or drift is not stationary. We distinguish the two terms.

® A regression line has a trend.
e A random walk and other autoregressive processes have drifts.

lllustration: Suppose inflation has a drift of 5% per annum. If inflation is 3% in 20X8, we
might expect it to be 4% in 20X9: an AR(1) process of the first differences with ¢, = 50%.

lllustration: Suppose average claim severity has a trend of 5% perannum. If claim severity
increases 3% in 20X8, we might expect it to increase 6% in 20X9. We assume that random
fluctuations causes claim severity to be below trend in 20X8, so the increase in 20X9 is
higher than trend.

Take heed: Trends in marriage rates, divorce rates, abortion rates, crime rates may change
direction. A student project may examine the ARIMA process before and after the change
in trend. Graph the data, separate into periods, and fit models to each period.

Stochasticity and seasonality obscure trends. A student project on climate change can be
wonderful. Extensive data can be found on public web sites, and the implications are hotly
debated. But high weather stochasticity overwhelms small trends. You may fit an ARIMA
process to long-term weather indices to see if trends are real.

lllustration: To see trends in home sales, we use 12 month moving averages to remove the
seasonality and dampen the stochasticity. Households buy homes in the summer months
more than in winter months. A 2% annual trend in real (inflation-adjusted) home sales is
obscured by the seasonality and random fluctuations.

Recommendation: Recent economic changes show the difficulty of identifying trends.
Economists disagree if the U.S. economy is heading toward recession, if credit problems
are a correction of lax lending practices, or if banks gave loans to weaker borrowers to
meet federal non-discrimination requirements. A student project on home sales or
mortgage rates might examine these issues.

LINEAR vS EXPONENTIAL TRENDS
To distinguish among linear, exponential, and other trends, graph the data.

® A linear trend appears as a straight line.
® An exponential trend appears as a convex (concave upward) curve.

Checking if a trend is linear or exponential is not easy. A non-linear trend is not necessarily
exponential. It may be



® A linear trend whose slope coefficient changes over time.
® A linear trend with much random fluctuation.
® A non-linear and non-exponential trend.

Decide if a trend is linear or exponential two ways:
1. Compare the trend of the time series to the trend in the logarithm of the time series.
2. Decide intuitively whether a linear or exponential trend makes more sense.

lllustration: If $100 rises to $110,$200 should rise to $220. The relation is multiplicative and
the trend is exponential. But if Greenland’s temporary rises from 1° Celsius to 2° Celsius
in the 20™ century, it might rise to 3° Celsius in the 21 century: a linear trend.

To adjust a time series for trend:

® For a linear trend, take first differences.
e For an exponential trend, take logarithms and then take first differences.

For stock prices, financial analysts take logarithms of ratios, which are the first differences
of the logarithms. Either method is fine for the student project.

Summary

The initial steps in ARIMA modeling include: separate the time series in homogenous
periods, de-seasonalize the data, and adjust for trends.

e |f the time series differs in two time periods, separate the periods.

e |f the time series is seasonal, de-seasonalize the data, take a seasonal difference, or
use a seasonal lag in the ARIMA model.

e |f the time series has a linear trend, take first differences.

e |f the time series has an exponential trend, take logarithms and first differences.



Step #10: STATIONARITY

Convert the time series to stationary form. Be careful not to take differences unless they
are appropriate.

lllustration: The first and third interest rate periods in the interest rate project template have
upward or downward drifts. They are not stationary, but their first differences may be
stationary. Your student project tests for stationarity and fits an appropriate model.

The middle period is more complex. The interest rates in the middle period are volatile,
and the drift may be random fluctuation. Even if the drift is zero and the volatility is
constant, the time series could be white noise or a random walk. White noise is stationary
and a random walk is not stationary. Your student project may test if the process is white
noise, a random walk, or something else.

To test if a series is stationary, use sample autocorrelations, unit roots, and correlograms.

(1) Regress the time series on the same values one period back. This is an AR(1) model,
which is the most common ARIMA process. If ¢, (the [ of the regression equation) is more
than 1 or less than —1, the time series is not stationary. We see this in the graph as well.

e [fp, > 1, the time series grows continually. Random fluctuations may cause any single
value to be smaller (in absolute value) than the preceding one, but the growth is clear
over long periods. To correct this, take (logarithms and) first differences.

e |If ¢, <—1, the time series grows continually and oscillates. Random fluctuations may
obscure the exact process, but the oscillations are evident. This type of processis rare.

(2) If ¢, is = 1, the time series is a random walk and is not stationary. Because of random
fluctuations, the ordinary least squares estimator of the parameter is never exactly one.

e |f we estimate ¢, as 0.95 in a time series of 40 observations, we assume it is one and
the time series is a non-stationary random walk.

e |f we estimate ¢, as 0.80 in a time series of 400 observations, we assume itis less than
one and the time series is a stationary AR(1) process.

We rely on judgment, not on hard rules: ¢ statistics and p-values for the null hypothesis that
¢, = 1 help us decide, but we don’t have rigid rules.

lllustration: In the regression for the AR(1) model on the interest rate project template, the
first and third periods have a ¢, of 0.99, and the second period has a ¢, of 0.85. [These
are the values in the illustrative worksheet. You may choose a different time series and
different periods. You will get different parameters and perhaps different conclusions.]



The volatility is higher in the middle period than in the first or third periods. All three
periods may be random walks, but the volatility is so high in the middle period and the
length of the period is so short (48 months) that the slope coefficient has a high variance.

(3) The correlogram tests if the time series is stationary. If the autocorrelations do not
decline rapidly, the time series is not stationary. Rapid decline means at least geometric
decline. The time series is stochastic, and it may be hard to judge if the decline is rapid.

Checking if an interest rate time series is stationary is not easy. Annual interest rates are
moving averages of 12 monthly forecasts. Since 11 of the 12 months are the same in
adjoining periods, we get a ¢, = 1in an AR(1) process.

Take heed: Be careful when you examine the stationarity of long duration interest rates.
Overnight LIBOR fluctuates rapidly; Moody’s 30 year corporate bond rate is steady.

If the time series or its first differences is stationary with a ¢, < 1, we have a possible AR(1)
model. We consider three more items:

® |s the model correct? (Are the residuals close to a white noise process?)
® |s the model optimal? (Do other ARIMA processes fit equally well or better?)
® Does the model forecast well? (Do future values fall within a confidence interval?)

CoMMON ERRORS: FIRST DIFFERENCES

A random walk is not stationary and an AR(1) process with a high ¢, (but less than one)
is stationary. Time series are stochastic, and it hard to distinguish the two scenarios.

e Not taking first differences of the random walk leaves a non-stationary series.
® Taking first differences of the AR(1) process is an error. We lose information about the
time series, making it harder to forecast future values.

Take heed: Some candidates reason: the correlogram does not decline to zero quickly.
The first differences form a more clearly stationary time series, which is easier to model.

Don’t take first differences simply to make the time series easier to model. Take first
differences only if the time series is not stationary. First differences lose information.

lllustration: We use monthly interest rates to get enough data points to test hypotheses.
But monthly interest rates might make a stationary time series seem like a random walk.

Suppose annual interest rates are a stationary AR(1) time series with ¢, = 80% and 0 =
2%, so the mean interest rate is 10%. Monthly interest rates might have an AR(1) process
with ¢, = 98% and & = 0.2%, so the mean interest rate is still 10%. This looks like a
random walk, but it is not.



If the interest rate per annum is 12% in January 20X7, the forecast for January 20X8 is
80% x 12% + 2% = 11.60%. Using the monthly model, we get

February 20X7: 98% x 12% + .2% = 11.96%
Repeating this 12 times gives a forecast for January 20X8 of about 11.6%.

Take heed: If the correlogram shows geometric decline, the time series is stationary, even
if the decline is slow.

ComMMON ERRORS: MOVING AVERAGES

Use moving averages to find trends, not to test for stationarity. Moving averages are often
used to remove seasonality. The moving averages obscure seasonality; they don’t test for
seasonality. Test for seasonality by examining monthly figures, and adjust for seasonality
by one of the other methods in this course.

Don’t use 12 month moving averages to form better correlograms. 11 of 12 months are the
same in adjoining periods, so the sample autocorrelation function is high.

12 month interest rates are moving averages of 12 monthly forecasts, so be careful when
you examine the stationarity of long rates. The correlogram examines the autocorrelation
of long range forecasts. The forecasts change slowly; an interval of one month might show
a random walk even if the true process is AR(1) with a high ¢, parameter.

Take heed: The NEAS web site shows daily estimates of the investment grade corporate
bond rate. A daily correlogram has such short intervals that patterns are hard to observe.
You may use monthly intervals to evaluate the correlogram.

Take heed: The length of the time series (humber of observations) does not determine the
proper length of intervals.

® A time series of daily temperature over 100 years may have 36,524 observations.

® The daily temperature changes so quickly that intervals longer than 1 day do not show
ARIMA processes.

® You may use hourly time series, with 24 hour seasonality overlaid on 365 day patterns.

Use quarterly or annual intervals to test if 90 day or 1 year Treasury bills are stationary.
This is fine for the first period on the NEAS web site, which has 34 years. The middle
period has only 4 years, and we can not use annual rates.

Take heed: If possible, detrend the time series, eliminate cycles and inflation, adjust for
seasonality, and use methods besides taking differences to make a time series stationary.
Taking differences is the proper adjustment only for random walks. The textbook does not
make this clear.



Step #11: TESTING FOR WHITE NoOISE

The objective of ARIMA modeling is to forecast future values. Time series are stochastic,
so forecasts do not exactly equal the future values. Ideally, the ARIMA process eliminates
everything but the white noise of random fluctuations (the error term).

Check for white noise two places in your student project:

~ Once the time series is stationary, check if it is white noise.
~ Atfter fitting an ARIMA process, check if the residuals are white noise.

Some statisticians consider white noise an ARIMA(0,0,0) process. If the first differences
are white noise, the series is an ARIMA(0,1,0) process. Other statisticians say that white
noise doesn’t require an ARIMA model.

Use three tests for white noise: Durbin-Watson statistic, Bartlett's test, and Box-Pierce Q
statistic. If the model is correct and the residuals are white noise:

® The regression of the series on the series lagged one period has no serial correlation,
so the Durbin-Watson statistic is = 2.

® The sample autocorrelation of the residuals is normally distributed with a standard
deviation of 1V T. Test this by examining percentiles. (Excel has a built-in function to
test the percentiles. The function is not explained in the textbook, but you may use it.)

® The Box-Pierce Q statistic has a x-squared distribution with the appropriate degrees of
freedom.

If you have taken the regression analysis course, you can check the significance of the test
using the Durbin-Watson table in the textbook. Keep in mind two items:

~ We are using a lagged value as the independent variable in the regression. The critical
values for significance are not proper in this scenario. We use the Durbin-Watson
statistic to help examine the time series, but we do not draw firm conclusions.

~ Ifthe independent variable itself has a high autocorrelation, the Durbin-Watson statistic
overstates the correlation of the residuals. The Durbin-Watson statistic may give wrong
conclusions for time series modeling, so be careful with your analysis. The textbook
mentions the problem, and recommends the Box-Pierce Q statistic instead.

For the student project, you may use the Durbin-Watson statistic. We want to see if you
understand how to use the tool and what the results mean. We know that the test is not
accurate for time series, and we do not require that you comment on this.

The Durbin-Watson statistic differs from Bartlett’s test and the Box-Pierce Q statistic:

® The Durbin-Watson statistic uses autocorrelations of lag 1. Bartlett’s test and the Box-
Pierce Q statistic use autocorrelations of many lags. Bartlett’s test and the Box-Pierce



Q statistic are more robust, but if the sample autocorrelation of lag 1 is close to zero,
the time series is probably a white noise process.

® Thetests are scaled differently. White noise has a Durbin-Watson statistic of 2, sample
autocorrelations that vary normally about zero (Bartlett’s test), and a Box-Pierce Q
statistic that is lower than the relevant x-squared statistic.

® The progression of X values affects the autocorrelation of lag 1, so hypothesis testing
is more complex for the Durbin-Watson statistic. The regression analysis module on
the Durbin-Watson statistic explains how the correlation of the X values obscures the
sample autocorrelation of the residuals.

If the Durbin-Watson statistic is 2, the process does not have an autoregressive coefficient
of lag 1. It may have moving average coefficients or a seasonal autoregressive coefficient.

® Most ARIMA process have an autoregressive coefficient of lag 1. If the Durbin-Watson
statistic is less than 1.600 to 1.700 (depending on the length of the time series), we
examine AR(1) and AR(2) processes.

e |f the Durbin-Watson statistic is between 1.800 and 2.200, the time series may be a
white noise process. We examine Bartlett’s test and the Box-Pierce Q statistic.

Bartlett’s test and the Box-Pierce Q statistic examine more sample autocorrelations, such
as the first 20 values. If they are close to zero, the time series is probably white noise.
The standard deviation of the sample autocorrelations depends on the length of the time
series. We have decades of interest rates, so we use them for the project templates. If
you use ten years of annual premium volume for your student project, the data are too
sparse for the statistical tests.

We check the percentage of sample autocorrelations with absolute values above various
levels. We use judgment to evaluate the significance. This is a strong test. If you are
familiar with Excel, you can use built-in functions for most of the work.

Review the discussion forum posting on time series techniques. We provide cell formulas
and functions needed to complete the student project.



Step #12: ARIMA MoDELS

Once the time series is stationary but not white noise, specify an ARIMA process. The
most common processes are AR(1), AR(2), MA(1), and ARMA(1,1). Each process has
seasonal versions, versions with first differences, and versions with logarithms.

lllustration: An AR(1) process might be ARIMA(1,1,0), AR(12), where the ¢,, parameter
is for seasonality, ARIMA (12,1,0), or logarithmic versions of these.

Use simple processes for the student project. We review the student projects to see if you
use statistical techniques properly. If you specify and test AR(1), MA(1), and ARIMA(1,1,0)
models, and you explain what each model implies, you have completed the student project.

For each process, select parameters.

® For AR(1) and AR(2) processes, fit the model with linear regression.
® For MA(1) processes, use the Yule-Walker equations.

You may use other statistical software to fit the models. You may also use Excel SOLVER
built-in function to fit a model.

Some time series are white noise after taking differences and logarithms, adjusting for
seasonality, and regressing on economic or financial variables. If you begin with a time
series that is not a simple random walk, and you take differences and logarithms, adjust
for seasonality, regress on economic or financial variables, and convert your time series
to a white noise process, your student project is fine.

lllustration: You use interestrates, daily temperatures, unemployment rates, inflation rates,
sports won-loss records, sales volume, baby names, claim severity, or claim frequency,
and you obtain a white noise process after the adjustments mentioned above:

® Check if a time series with fewer differences is stationary. Some candidates assume
a time series with lower sample autocorrelations is better. They use second differences
if that gives lower sample autocorrelations than the initial time series or first differences.

e |f the time series with fewer differences is not stationary, write up the student project
and turn it in. Do not think you erred because your result is a white noise process.

If you start with a white noise process or a random walk, you don’t use ARIMA modeling.

® Do not use earthquake frequency (a white noise process) and test for white noise. We
are not asking if you can form a white noise process.

® Do notuse daily stock prices (a random walk), take logarithms and first differences, and
say the result is white noise. This does not show that you can use ARIMA processes.



You don’t use the statistical techniques in the time series course for the two series above.
But both series can be used if you analyze seasonality, cycles, drifts, and trends.

You can begin with daily stock prices and model weekly or annual seasonality. Economists
refer to these as the Monday effect and the January effect. Statisticians have spent years
modeling these two effects, and we don’t know what causes them. Many financial papers
analyze these patterns, and they are good topics for student projects.

lllustration: Monday effect

Take logarithms and first differences of daily stock prices. Index the data so that Mondays
are 1 mod 5, Tuesdays are 2 mod 5, ..., and Fridays are 0 mod 5. Use an AR(5) model
with values for ¢, and ¢, which you can fit easily with Excel.

Take heed: Holidays (New Year’s, Fourth of July, Thanksgiving) don’t have stock prices.
To obtain entries for the time series, use the geometric average of the adjoining days.

lllustration: January effect

Take logarithms and first differences of monthly stock prices. Use an AR(12) model with
values for ¢, and ¢,,. The monthly stock price may be the average in the month or the
value on the 15" of the month.

lllustration: Natural catastrophes

Hurricanes have possible trends and cycles. You can fit an ARIMA model to a hundred
year history of hurricane frequency.

Take heed: You don’t need complex ARIMA models for the student project. Your student
project should show that you understand how a moving average model differs from an
autoregressive model and that you know how to test for each model. Use simpler models.
If the simple models do not pass the Box-Pierce Q statistic, explain in your write-up what
else a statistician might look at.

lllustration: Suppose your student project examines new home sales in Boston, and no
simple ARIMA process gives white noise residuals. Your student project may say:

“‘New home sales are affected by economic conditions and mortgage rates. | regressed
new home sales on GDP, but the indices | used were rough. Ideally, we should examine
the residuals of new home sales in Boston regressed on per capital real persona income
in Boston and on new home mortgage rates. In addition, | looked only at AR(1), AR(2), and
MA(1) processes. A more complete analysis would look at ARIMA processes with more
parameters.”



Step #13: Correlograms

To choose among ARIMA processes, examine the correlograms. The illustrative spread-
sheet on the NEAS web site gives the sample autocorrelation function.

Autoregressive models have geometrically declining sample autocorrelations and
spikes in the partial autocorrelation function.

Moving average models have spikes in the sample autocorrelation function and
declining partial autocorrelations.

Use the partial autocorrelation function if you have more sophisticated statistical software.
To determine partial autocorrelations, we use nonlinear regression, which we do not cover
in the statistics courses. Use the sample autocorrelations in the correlogram.

The autocorrelations from an AR(1) model have a geometric decline beginning with the first
lag. The sample autocorrelations are the relations in a sample of observations. Ten years
of monthly interestrates give 120 observations. The sample autocorrelations are stochastic
and do not show a perfect geometric decline.

If the sample autocorrelations have a reasonably rapid decline (but don’t drop to zero
immediately), AR(1) is usually the best model. You may test other processes, but the
AR(1) solution is fine. Unless the number of observations is high and ¢, is close to 1
(or —1), you can’t confirm that the decay is geometric, since stochasticity overwhelms
the expected results.

If the sample autocorrelations are close to zero after the first lag, the indicated model

depends on the first sample autocorrelation and the number of elements.

+ If the sample autocorrelation for the first lag is high or negative, the model may be
MA(1).

+ If the sample autocorrelation for the first lag is positive but low, such as 15%, the
model is probably AR(1). The indicated sample autocorrelation for the second lag
of an AR(1) process is 15%7 = 2.25%, which is overwhelmed by stochasticity. Even
if the sample autocorrelation for the first lag is 30% or 40%, the stochasticity is large
enough in small or medium-size samples to obscure the sample autocorrelations.

If the sample autocorrelation for the first lag is high or negative, and the remaining

sample autocorrelations have a geometric decline, the model may be ARMA(1,1).

If the sample autocorrelations for the first two lags are high and geometrically declining

afterward, the model may have an AR(2) term and perhaps MA terms of order 1 or 2.



Step #14: STRUCTURAL MODELS

Some candidates presume that structural models are more complex, so the student project
takes more time. The opposite is true: the regression eliminates much of the variability in
the original time series, and the ARIMA fitting is easier.

lllustration: Moody’s investment grade corporate bond yield shows fluctuations, cycles, and
trends. The corporate bond spread (after subtracting the long-term Treasury bond rate)
is an ideal time series for ARIMA modeling.

Regress the corporate bond spread on the GDP growth rate. The residuals should be a
stationary time series, which you might fit as white noise, AR(1), MA(1), or ARMA(1,1).

If you model the corporate bond yield itself

® The fitis less good and you may have to separate the time series into periods.
® You spend more time analyzing correlograms and choosing among alternative models.

By modeling the residuals of the corporate bond spread regressed on the GDP growth rate,
you spend an extra hour getting the time series, but the rest of your project is quick.



Step #15: ORDER OF MODELS

The textbook uses correlograms and in-sample tests to select a model. But ARIMA
modeling is imprecise, since other factors may affect the time series values.

For the student project, use a sequence of models. First check trends and seasonality.

® De-trend the values. Use first differences and logarithms to determine the type of trend.
You get a better ARIMA fit if you de-trend the time series with an inflation index and you
de-seasonalize the data than if you take differences.

® Add seasonal lags or de-seasonalize the time series if needed.

Form a correlogram to see if an AR(1) or MA(1) model is appropriate.

Fit an AR(1) model with ordinary least squares for the autoregressive parameter and the
seasonal parameter, if any. Compute the residuals from the AR(1) model and check the
Durbin-Watson statistic, Barlett’s test, and the Box-Pierce Q statistic.

If these tests are not significant, the residuals may be a white noise process and an AR(1)
model is reasonable.

Do the same fitting for an AR(2) model, and state whether the better fit justifies the extra
parameter. If the AR(2) model is much better than the AR(1) model, use it for the
diagnostic testing; otherwise, we use the principle of parsimony and stick with AR(1).

Use the Yule-Walker equations to estimate 0, foran MA(1) process. Estimate the residuals
from this model and apply the in-sample goodness-of-fit tests.

Take heed: Statistical software uses nonlinear regression to estimate an MA(1) process.
For the student project, use the Yule-Walker equations. The estimated model is not the
best possible, but it is close. We examine whether you correctly form the residuals from
the MA(1) model for the Box-Pierce Q statistic and Bartlett’s test.

Jacob: When do we use higher order autoregressive models?

Rachel: Some statisticians routinely use high order ARIMA processes; others do not. If you
use the simple model correctly, and you explain what each model implies, you don’t need
more complex models.

Jacob: What ARMA(1,1), as well as its ARIMA and seasonal variants?

Examine the correlogram to see if ARMA(1,1) is indicated. If it is, explain how we see this
from the correlogram. You do not have to fit the model.
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