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Analyzing Housing Sale Patterns using ARIMA Models
Introduction

The goal of this project is to develop an ARIMA model that can predict the cyclical variation in housing sales that occurs beyond changes due to economic factors. Therefore the effects of the relevant economic explanatory variables were removed using linear least squares regression before analyzing the residual data using ARIMA models. The resulting residuals were tested for homogeneity, and sample autocorrelation functions from various test specifications were used to identify a suitable ARIMA model. The model parameters were then estimated using an iterative OLS regression technique, and the model was validated based on the Box and Pierce Q statistic. 
Data and Residuals
Four sets of home sales data were analyzed. Linear least squares regression was applied to each housing sale data set using real GDP per capita and national average conventional mortgage rates as explanatory variables. A separate supporting Excel file is provided for each data set as follows: 

1. “Housing_Sales_Model(Total).xls” for total home sales.

2. “Housing_Sales_Model(Not Started).xls” for homes not started.

3. “Housing_Sales_Model(Under Construction).xls” for homes under construction.

4. “Housing_Sales_Model(Completed).xls” for homes completed. 
National average conventional mortgage rate data was obtained from the Federal Housing Finance Board on a monthly basis from January 1973 to December 2007. Real GDP per capita covering the same period was obtained from the US Bureau of Labor Statistics on annual basis and was smoothed on a monthly basis assuming exponential growth. These sources are referenced in the appendix, and the data is included in the  “Mortgage Rates” and “GDP Per Capita” worksheets of each supporting Excel workbook.

Due to the high (negative) correlation between the unemployment rate and with real GDP, these two explanatory variables were not utilized in tandem, since a high degree of multicolinearity would have resulted in inefficient OLS model parameters. Nonetheless significant multicolinearity still exists between mortgage rates and real GDP per capita as evidenced by the value of r =  ∑X1iX2i  /  SQRT( ∑X1i2 ∑ X1i2)   = -.697 as shown in the “OLSR  Model - Mort and GDP” worksheet. This unexpected situation could be explained by the way in which low interest rates fuel economic growth and higher GDP per capita. Mortgage rates were nonetheless used together with real GDP per capita in the OLS model used for removing the effects of these variables. The residuals from the OLS model developed in the “OLSR  Model - Mort and GDP” worksheet for each data set  were thus assumed to be free of the effects of these two explanatory variables, since the sample standard deviations for the model parameters, Sβ1 and Sβ1, were small in magnitude compared to the parameter estimates. 

Having applied the OLS model found in the “OLSR  Model - Mort and GDP” worksheet for each data set in order to remove the effects of economic variables, it was notable that the effect of GDP per capita was most prominent on sales of homes not started, as evident from the R2 of 63% compared to 28% and 24% for homes under construction and completed respectively. Indeed while new home sales, and to a lesser extent homes under construction, were positively correlated with real GDP per capita, existing (completed) home sales were not correlated. (The slight negative correlation for completed homes apparent in the model could be due to parameter error). Hence homes not yet started are more sensitive to fluctuations in income, as measured by real GDP per capita. One might expect this behavior simply due to the fact that the growth in the supply of houses to meet higher demand when disposable income rises is fueled by new home contracts (not started) rather than existing ones (under construction or completed).
The residuals from applying the OLS model to each data set were then analyzed as a time series. This paper uses the total home sales as an example, although each data set was analyzed by the same process.
ARIMA Model Specification
Having eliminated variation due to economic explanatory variables, the homogeneity of the data and possible orders of the AR and MA components for the model were identified by analyzing the sample autocorrelation function and partial autocorrelation function as well as visually inspecting the residuals. The residuals do exhibit cyclical behavior, with a period of 12 months, suggesting that ARIMA model could be used to forecast fluctuations in home sales that are not explained by economic factors.
First of all the sample autocorrelation function for the total home sales residuals directly from the OLS model used to remove the effects of economic variables indicated that they was not stationary. Note how the sample autocorrelation function in Chart 1 below decreases too slowly, and the oscillation does not converge to zero.
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Hence 1st differences were applied, yielding the series (1 – B) řt. The resulting sample autocorrelation function appeared stationary, however oscillating about zero as displayed in Chart 2. 
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Chart 2 - Sample Autocorrelation for Final Model - Total Sales
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Further “deseasonalizing” the data by applying a 12 month difference yielded a stationary series,         (1 – B) (1 – B12) řt ,  without apparent cyclical behavior based on the sample autocorrelation function shown in Chart 3 below. (Of course the AR parameters used to take first differences and “deseasonalize” the data both equal one, so that the series was not stationary before applying these operations). Although the series appeared stationary, it did not seem like white noise since there is a significant “spike” in this sample autocorrelation found at lag 12, and a lesser drop at lag 1. This suggests the presence of a moving average (MA) time series component.
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Hence the Q Statistic was applied in order to formally test for white noise. A Q Statistic value of 248, based on 108 degrees of freedom indeed indicated that the series was not white noise, since a Q Statistic of just 145 is sufficient to reject the null hypothesis that the time series is white noise. This Q statistic was determined using 420 data observations and 120 lags was calculated as 420  ∑Pk2 , where Pi  represents the sample autocorrelation function for lag k; Therefore, the Chi-Squared distribution for this Q Statistics had 120 – p – q = 120 – 8 – 0 = 108 d.f. The development of the Q Statistic is shown I the “Autocorrelation – Residuals” worksheet (column I).  Thus after taking first differences and “deseasonalizing” the data, the task remained of identifying the autoregressive and moving average components of the for the series

 (1 – B) (1 – B12) řt.
In order to identify outliers in the sample autocorrelation function, any value having absolute value in excess of   2 / SQRT(420) = .0976, where 420 data observations were available was considered unordinary. This approach is based on Bartlett’s result that each sample autocorrelation random variable is approximately distributed with standard deviation equal to    1/ SQRT(T), where T = number of data observations for calculating each sample autocorrelation Pk. Hence sample autocorrelation function values P1 and P12 exhibited notable deviations. The remaining values in excess of .0976 are within 3 standard deviations and are expected given the 120 sample autocorrelation values used.
So although the sample autocorrelation function decreased immediately within two lags, it exhibited a sharp drop in the 12th lag. This suggested a moving average component, rather than an autoregressive one, because there were no periodic deviations in the sample autocorrelation function. For example a build-up in inventory in one year could reduce sales in the following year but not thereafter, as modeled by a moving average component which has no memory beyond one year (12 month-lags). Therefore the following MA(12) model was considered for the differenced and “deseasonalized” residuals: (1 - Θ1B) ( 1 - Θ12 B12) et = (1 - B) ( 1 - B12) řt
 Letting Wt = (1 - B) ( 1 - B12) řt, this model can be restated as  et = Θ -1 (B) Wt
This is the form of the model that was analyzed and calibrated to each data set.

ARIMA Model Calibration
Since the inverse function Θ-1(B) is non-linear in Θ1 and Θ12, an iterative technique was applied in order to estimate Θ1 and Θ12. This consisted of first estimating Θ-1(B) , which is an infinite series involving powers of Θ1 and Θ12, such that ordinary least squares regression could be iteratively applied to the data set defined based on current estimates of Θ1 and Θ12 as follows:
Letting et = Θ-1(B) Wt = F(Θ1, Θ12, Wt , Wt-1 , Wt-2 , ….)  the OLS model is set up with dependent variable observations F(Θ1, Θ12, Wt , Wt-1 , Wt-2 , ….)  and independent variable observations  defined as  ( -δ F(Θ1, Θ12, Wt , Wt-1 , Wt-2 , ….)  / δ Θ1 )  





          and ( -δ F(Θ1, Θ12, Wt , Wt-1 , Wt-2 , ….)  / δ Θ2 ) .
Since the independent data consists of the 1st partial derivatives of the function F() with respect to  Θ1 and Θ2 , it follows that the OLS model linearizes the function F() tthrough a 1st Order Taylor Approximation, where the OLS model parameters (independent variable coefficients β1 and β2 ) represent changes from the current estimates of Θ1 and Θ12.
More formally the ordinary least squares model is defined in the following form:

Θ-1(B) Wt = F(Θ1, Θ12, Wt , Wt-1 , Wt-2 , ….)  =  α   +

 ( -δ F(Θ1, Θ12, Wt , Wt-1 , Wt-2 , ….)  / δ Θ1 ) β1 + ( -δ F(Θ1, Θ12, Wt , Wt-1 , Wt-2 , ….)  / δ Θ2 ) β2
for each observation W t with prior data Wt-1 , Wt-2 , … etc.

Thus having estimated β1 and β2 through least squares regression, the estimates Θ1 and Θ12 are adjusted as Θ1 = Θ1 +  β1 d1 , and Θ2 = Θ2 +  β2 d2, where d1 and d2 are arbitrary differentials (the smaller the differential the more accurate of course, albeit the slower the run time in practice).

At this point the definition of Θ-1(B) Wt = F(Θ1, Θ12, Wt , Wt-1 , Wt-2 , ….)  and consequently of its partial derivatives δ F(Θ1, Θ12, Wt , Wt-1 , Wt-2 , ….)  / δ Θ1 ) β1 and  

                                  δ F(Θ1, Θ12, Wt , Wt-1 , Wt-2 , ….)  / δ Θ2 ) β2 was of practical significance.

Since Θ-1(B) Wt = F(Θ1, Θ12, Wt , Wt-1 , Wt-2 , ….)  is an infinite series, it was estimated through recursion. This infinite series can be developed using binomial “n choose k” coefficients equal to “n (n-1) (n -2) …. (n-k+1) / k!” , where k is the sum of the powers of Θ1 and Θ12 and k is the power of either Θ1 or Θ12. Such binomial coefficients are found based on all the possible nested combinations due to recursively applying Θ1 et-1 and Θ12 et-12 for each value of et. 

The series is defined as follows:
et = Wt  + Θ1 et-1 + Θ12 et-12 =  Wt  + Θ1 Yt-1 + Θ12 Yt-12  + Θ12 et-2 + Θ122 et-24 + Θ1 Θ12  et-13  =  … etc.

Therefore at the nth level of recursion the binomial coefficient, “n choose k”, applies to the term Θ1k Θ12 (n-k)  .
Hence 

et = Yt  + Θ1 Yt-1 + Θ12 Yt-12  
+ Θ12 Yt-2 + Θ12 Θ1 Yt-13 + Θ122 Yt-24 

+ Θ13 Yt-3 + 3 Θ12 Θ12   Yt-14 + 3 Θ1 Θ122  Yt-25 +  Θ123 Yt-36

+ Θ14 Yt-4 + 4 Θ13 Θ12   Yt-15 + 6 Θ12 Θ122  Yt-26  + 4 Θ1 Θ12 3  Yt-37  +  Θ124 Yt-48
+ Θ15 Yt-5 + 5 Θ14 Θ12   Yt-16 + 10 Θ13 Θ122  Yt-27  + 10 Θ12 Θ12 3  Yt-38  + 5 Θ1 Θ12 4  Yt-49  +  Θ125 Yt-60
+ Θ16 Yt-6 + 6 Θ15 Θ12   Yt-17 + 15 Θ14 Θ122  Yt-28  + 20 Θ13 Θ123  Yt-39  + 15 Θ12 Θ124  Yt-50  
+ 6 Θ1 Θ125   Yt-61 +  Θ126 Yt-72
+ . . . . . etc.
Since this series representing Θ-1(B) Wt is infinite, it was approximated based on ten levels of recursion, through the Visual Basic macros found in the “FunctionUtilities” module of the supporting spreadsheets. In particular the function “InverseSeriesMA2” approximates Θ-1(B) Wt to the specified level of recursion given a starting observation Wt and current estimates for Θ1  and Θ12. Likewise the functions “InverseSeriesMA2D1” and “InverseSeriesMA2D2” approximate the partial derivatives of Θ-1(B) Wt with respect to Θ1 and Θ12. Given that Θ1 and Θ12 appear to be significantly less than one in magnitude, .212 and .417 respectively, based on the sample autocorrelation function, the infinite series should converge fairly rapidly, leading to a fair approximation using ten levels of recursion.

The “Θ-1 (for Validating VB Funct.)” worksheet further validates the recursive definition of      Θ-1(B) Wt up to six levels. 
Hence using sample autocorrelation function values P1 = .212 and P12 = .417 were as initial guesses for Θ1 and Θ12, the least squares regression model specified above was applied iteratively in order to obtain estimates for Θ1 and Θ12. The OLS model is defined in the “OLSR Model - Taylor Approx” worksheet of each supporting Excel file (one file per data set). This least squares model uses the Visual Basic functions “InverseSeriesMA2D1” and “InverseSeriesMA2D2” in order to define the dependent and independent variable data as explained above.
 The iterative procedure was then executed using the Visual Basic subroutine named “RunIterativeApproximation”  found within the “ParameterApprox” approx module, storing the results in the “Iterative OLSR Approx” worksheet. This procedure updates the estimates of both Θ1 and Θ12 based on the least squares coefficient estimates such that nΘ1 = n-1Θ1 + β1 d1  and nΘ12 = n-1Θ12 + β2 d2, where for example  nΘ1 represents the nth estimated for Θ1. d1 = d2 = 0.025 were used, and  consecutive iterations were applied up to a maximum of 5,000 or until the estimates for Θ1 and Θ12 both did not change simultaneously by a threshold of more than 0.00001.
For example the iterative procedure results from the “Total Home Sales” data resulted in the following converging estimates for MA parameters Θ1 and Θ12 .
	Iteration
	Θ1 Estimate
	Θ12 Estimate
	R2 from Linear Approx
	TSS (from Θ-1(B) Wt data)

	1
	    0.200000 
	            0.400000 
	                              0.060744 
	                           8,032.182996 

	2
	      0.201733 
	            0.406236 
	                              0.058031 
	                           8,008.181081 

	3
	      0.203342 
	            0.412331 
	                              0.055431 
	                           7,985.316064 

	4
	      0.204826 
	            0.418286 
	                              0.052944 
	                           7,963.533488 

	5
	      0.206188 
	            0.424104 
	                              0.050570 
	                           7,942.779795 

	6
	      0.207430 
	            0.429787 
	                              0.048309 
	                           7,923.002433 

	7
	      0.208555 
	            0.435338 
	                              0.046159 
	                           7,904.149970 

	8
	      0.209564 
	            0.440758 
	                              0.044119 
	                           7,886.172197 

	9
	      0.210460 
	            0.446051 
	                              0.042188 
	                           7,869.020225 

	10
	      0.211245 
	            0.451220 
	                              0.040363 
	                           7,852.646575 

	11
	      0.211923 
	            0.456267 
	                              0.038641 
	                           7,837.005263 

	12
	      0.212497 
	            0.461196 
	                              0.037020 
	                           7,822.051873 

	13
	      0.212969 
	            0.466010 
	                              0.035498 
	                           7,807.743625 

	14
	      0.213342 
	            0.470712 
	                              0.034069 
	                           7,794.039431 

	15
	      0.213619 
	            0.475305 
	                              0.032732 
	                           7,780.899937 

	16
	      0.213805 
	            0.479793 
	                              0.031482 
	                           7,768.287563 

	17
	      0.213901 
	            0.484179 
	                              0.030315 
	                           7,756.166527 

	….
	….
	….
	….
	….

	….
	….
	….
	….
	….

	….
	….
	….
	….
	….

	393
	      0.037964 
	            0.809854 
	                              0.000002 
	                           7,066.111967 

	394
	      0.037951 
	            0.809867 
	                              0.000002 
	                           7,066.111331 

	395
	      0.037939 
	            0.809879 
	                              0.000002 
	                           7,066.110717 

	396
	      0.037926 
	            0.809892 
	                              0.000002 
	                           7,066.110123 

	397
	      0.037914 
	            0.809904 
	                              0.000002 
	                           7,066.109550 

	398
	      0.037902 
	            0.809916 
	                              0.000002 
	                           7,066.108995 

	399
	      0.037890 
	            0.809928 
	                              0.000001 
	                           7,066.108460 

	400
	      0.037878 
	            0.809939 
	                              0.000001 
	                           7,066.107942 

	401
	      0.037867 
	            0.809951 
	                              0.000001 
	                           7,066.107442 

	402
	      0.037856 
	            0.809962 
	                              0.000001 
	                           7,066.106959 

	403
	      0.037845 
	            0.809973 
	                              0.000001 
	                           7,066.106492 

	404
	      0.037834 
	            0.809984 
	                              0.000001 
	                           7,066.106041 

	405
	      0.037823 
	            0.809994 
	                              0.000001 
	                           7,066.105605 

	406
	      0.037813 
	            0.810005 
	                              0.000001 
	                           7,066.105183 

	407
	      0.037802 
	            0.810015 
	                              0.000001 
	                           7,066.104776 

	408
	      0.037792 
	            0.810025 
	                              0.000001 
	                           7,066.104383 

	409
	      0.037782 
	            0.810035 
	                              0.000001 
	                           7,066.104003 


Note that the R2 from the least squares approximation decreases which each successive iteration. This is not an indication that the parameter approximations are becoming worse, but rather an expected result since each consecutive linear approximation of Θ-1(B) Wt tends to yield diminishing marginal improvement in the model fit once the actual values of Θ1and Θ12 are approached. In fact the Total Sum of Squares (TSS) also diminishes with each iteration, as the approximated values of Θ-1(B) Wt in the independent variable become more accurate. The residuals for the model based on total home sales for example suggest that the model is well calibrated, as supported by the Q Statistic of 115.10 (with 120 – 0 -12 = 108 degrees of freedom) which suggests that the residuals are white noise based on the sample autocorrelation functions over lags from 1 to 120 as calculated in the “Autocorrelation - MA Residuals” worksheet. The sample autocorrelation function illustrated in Chart 4 also supports the conclusion that the residuals are white noise, as the function drops rapidly and does not oscillate or “spike” excessively, although some values are beyond the 2/SQRT(T) value, i.e. two normal standard deviations according to Bartlett.
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Chart 4 - Sample Autocorrelation for Final Model - Total Sales
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Summary
For each data set the model's residuals are defined as et = Θ-1(B) Wt   , 
where Wt = (1 - B) ( 1 - B12) řt , and  řt is the residual from the OLS model used to removes the effects of mortgage rates and real GDP per capita from the home sales time series data.
Thus the first order homogeneous ARIMA(0, 1, 12) model is specified based on the first difference, (1 - B), of residuals form the OLS model that are “deseasonalized”, by applying the         ( 1 - B12) operator to the series.  Finally developing the MA component to řt yields et = Θ-1(B) (1 - B) ( 1 - B12) řt  = Wt, which is equivalent to Θ(B) et =  (1 - B) ( 1 - B12) řt  


         ( (1 – Θ1 B) ( 1 - Θ12 B 12) et =  Wt  as expressed in the following finalized model specifications.
Model Specification - Total Home Sales Data Set 
	(1 - 0.03777 B) ( 1 - .81005 B12) et = Wt = (1 - B) ( 1 - B12) řt
 

	Q Statistic with 108 d.f. = 115.11
	 


Likewise for the three other datasets the model specifications developed based on analogous spreadsheets are as follows.
Model Specification – “Homes Not Started” Data Set
	(1 - 0.06331 B) ( 1 - .83052 B12) et = Wt = (1 - B) ( 1 - B12) řt
 

	Q Statistic with 108 d.f. = 146.17
	 


 Model Specification – “Homes Under Construction” Data Set
	(1 - 0.05466 B) ( 1 - .81829 B12) et = Wt = (1 - B) ( 1 - B12) řt
 

	Q Statistic with 108 d.f. = 132.70
	 


Model Specification – “Homes Completed” Data Set
	 (1 - 0.06568 B) ( 1 - .83298 B12) et = Wt = (1 - B) ( 1 - B12) řt
 

	Q Statistic with 108 d.f. = 129.10
	 


Note the Q statistics for the homes under construction, homes completed, and total sales time series indicate that the residuals from applying the model to each data set are white noise at a 5% level of significance. These Q statistics are calculated in the “Autocorrelation - MA Residuals” worksheet corresponding to each data set. This means that the null hypothesis that the residuals are white noise can be rejected at just a 5% significance level, since the Chi Square value required to reject such a null hypothesis at the 5% level is 134. 
On the other hand the Q statistic for the homes not started sales model residuals is 146, which is barely above the value of 145 needed to reject the null hypothesis (of white noise) at the 1% level. Thus it is not clear whether the new home sales data model could be improved upon by the addition of MA parameters. On the other hand there are no clear “spikes’ in the sample autocorrelation function for homes not started, therefore more data would be necessary to further improve and validate the model. 
Although the MA parameter Θ12 for the individual data sets are larger than for the combined sales data, this could be due to the reduction in variance from having a more sales data for each observation for the combined sales. The fundamental results from the development of this “deseasonalized”ARIMA(0, 1, 12) model is nonetheless that home sales, after eliminating the effects of economic external factors, follow an annual cycle and are also affected by recent random variation in sales, as represented by the MA component. The moving average component is appropriate since effect of such random variations from the prior year wears off thereafter
Appendix – Data Sources

National average conventional mortgage rate data was obtained from the Federal Housing Finance Board. 
The following online data was downloaded from the FHFB Web site: ‘http://www.fhfb.gov/webfiles/6958/MIRS_table17_2007.xls’

Real GDP per capita on an annual basis from 1973 to 2007 was obtained from the US Bureau of Labor Statistics. Monthly values were then interpolated assuming exponential growth. 
Table III-1 from page 12 of the  following online document from the BLS Web site was utilized: ‘ftp://ftp.bls.gov/pub/special.requests/ForeignLabor/flsgdp.txt’
