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Applying ARIMA Model to Gasoline Price

Introduction

This report provides a study on applying an ARIMA model to characterize the conventional retail gasoline prices in US.  Gasoline is one of the most important resources in the world and its price affects the daily lives of many people.  In addition, different research has shown that many of the interest rates, such as the mortgage rate, has a strong dependency with the retail gasoline price.  If the price can be modeled, people can better plan out their resources.
Stationary Data

The data is obtained from the NEAS website.  The time period which is under the study is from Jan 1999 to April 2006.  Monthly average rate is obtained from the data.  The data is further adjusted for the inflation.  The graph below shows inflation-adjusted monthly retail gasoline price used in the current study.  
[image: image1.emf]Monthly Average Gasoline Price Adjusted by Inflation
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The prices for the period between Jan 1999 to June 2005 are used to define the model.  Afterward, a forecast is made using the developed model and the results are compared with the Ex-post Forecast data.

A series must be stationary before it can be modeled by ARIMA.  This project focuses on using the sample autocorrelation to determine the stationarity (and also the appropriate ARIMA model) of the data.  The graph below shows the sample autocorrelation of the gasoline prices.
[image: image2.emf]Sample Autocorrelation Function
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Since the sample autocorrelation function approaches zero as k increases, we conclude the series is stationary.
Model Specification
In addition to show that the series is stationary, the sample autocorrelation function also suggests the appropriate ARIMA.  The table below provides a few sample autocorrelation functions of the series:
	k
	k
	k / k-1

	1
	0.8772
	

	2
	0.7280
	82.993%

	3
	0.6207
	85.268%

	4
	0.5507
	88.719%

	5
	0.4837
	87.825%

	6
	0.4223
	87.324%

	7
	0.3707
	87.774%

	8
	0.3067
	82.721%


The sample autocorrelation functions declines geometrically, implying the model has autoregressive term.  There is also no spike existed in the sample autocorrelation, implying there is no moving average term in the model.  Therefore, a model with only autoregressive terms is adequate.

Parameters Estimation 
Since the price series can be described by autoregressive terms only, autoregressive model with different orders are fitted to the actual data using linear regression.  Then, a preliminary test using the Durbin Watson Statistic is used to test whether the residuals generated from the regression fit are a white noise process.  The table below provides a summary to the results. 
	Order
	
	R2 or Adj R2
	DWS


	1
	0.9333
	0.868090
	1.60543

	2
	0.9086
	0.862872
	1.82762

	3
	0.9544
	0.874114
	1.85738

	4
	0.9582
	0.873962
	1.95207


In all different-order autoregressive models, the summations of (i are less than one.  The fitted models are stationary, consistent with the actual data.
The R2 and the adjusted R2 are not significantly different among the models; however, the DWS for the AR(1) model is less than 1.8, suggesting the residuals from this model is likely to be serial correlated.

Therefore, the applicable model for the gasoline price should be an autoregressive model with order 2, 3 or 4.  Both the adjusted R2 and the DWS are not significantly different among these 3 models.  Due to the principle of parsimony, AR(2) is chosen as the model.  The equation for the model is as follow:
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	1
	1.125

	2
	-0.217

	
	13.259


Diagnosis Checking

Two tested are performed to verify the appropriateness of using the autoregressive model to describe the gasoline price series.  If the model is specified correctly, first of all, the calculated autocorrelation function should follow the same trend as the sample autocorrelation function.  Secondly, the residuals obtained from the difference between the actual data and the model should be a white noise process.

Autocorrelation Function
The graph below shows the sample and calculated correlograms for the first 8 lags.
[image: image4.emf]Sample and Calculated Autocorrelation Function
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Even though the autocorrelation function calculated from the AR(2) over-estimates the sample autocorrelation function, both of them decline geometrically and the values of the function are not markedly different.  Therefore, the AR(2) can be a valid model for the series.

Residuals
The Box Pierce Q statistic (BPQS) is used to test if the residuals are from a white noise process.  This statistic is estimated using the following formula:
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The spreadsheet (Tab Diagnosis Checking) provides the calculation of the statistics.  For the first 0 residual autocorrelations, the BPQS is 58.139, which is lower than the 10 % significance of a (2 distribution with 48 degree of freedom.  Therefore, we cannot reject the null hypothesis that the residual is not white noise.

The two test above show that the specified AR(2) can be used to model the gasoline price.

Forecast
Using the actual data from July 2005 to April 2006, an ex-post forecast is formed by using the AR(2) model.  The gasoline prices are adjusted for inflation.  The graph below shows both the actual data and the forecast price using the autoregressive model.
[image: image6.emf]Ex-post Forecast for Gasoline Price Using AR(2)
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Even though the values for the 2 series are not perfect, the forecast series, generally speaking, follows the same trends as the actual series.  This confirms that the AR(2) model is sufficient in describing the gasoline price behavior, at least for the period indicated.

Conclusion

An autoregressive time series model with 2 orders is developed to describe the gasoline price for the period from January 1999 to June 2005.  The appropriateness of the model is checked with the BPQS.  In the end, a forecast using the AR(2) is provided.  The forecast data, in general, agrees quite well with the actual.  There are still rooms for improvement.  One way is to use structural models to try to explain the movement in the data, facilitate the fitting of the ARIMA model afterward.  Nevertheless, structural models normally involve some kinds of in-depth knowledge in the field and can be costly to develop.
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