Time Series Course

Student Project

Daily Temperature in Tallahassee, FL
Objective

This project studies the average daily temperatures of Tallahassee, Florida and attempt to fit an ARIMA model to the data. 

Data 
Data was obtained from the University of Dayton daily temperature archive.  The database used in this project contained average daily temperatures for the period of January 1, 1995 to May 26, 2009.  However, all of the analysis performed used only data for the complete years of 1995 through 2008.  The data used in the analysis contained a total of 5,116 data points.  We believe this sample is large enough to produce meaningful results.
The following is a graph of the data:
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Average Daily Temperature in Tallahassee, FL
1995-2008





Clearly, there is a strong seasonal pattern to the data.  This is to be expected, since Tallahassee is cool in winters and hot in summers.  Therefore, we will not examine the autocorrelation function for the raw data, but proceed to de-seasonalize the series.

Seasonal Adjustment 
Before we de-seasonalize the data, we smooth the data.  The raw data form a jagged curve, which distorts the seasonality.  To correct for this, we use a multi-year centered moving average. We averaged the daily temperature over 98 days – a 14 year average of the date and the three preceding and the three following days. For example, the smoothed temperature on June 6 is the average of the temperatures on June 3-9 for 1995-2008.  
Below is a graph of the smoothed daily temperature:
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Next, we computed the seasonal index for each day by dividing the smoothed temperature for that day by the overall average for the data set (67.5).  We then computed the seasonally adjusted temperature for each day by dividing that day’s temperature by the corresponding seasonal index. For example, the seasonal index for August 1 is 1.185 (80.0/67.5).  The seasonally adjusted temperature for August 1, 1995 is then 70.2 (83.2/1.185).  This makes sense because August 1st is hotter than the average day, so its index is higher than one and the seasonally adjusted temperature is closer to the overall average.
This process removes the seasonal variations and “flattens” the data curve.  The effect can be seen by looking at one year of data; compare the raw data with the seasonally adjusted data for 1995 below. 
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Sample Autocorrelation Function
Now that we removed seasonality from our data, we are ready to analyze it and model it.  We will model the temperature in 1995 only in order to make the data more manageable. 

First, we need to determine if the series is stationary or not.  Examining the graph of the data above (“Seasonally Adjusted Temperature, 1995”) does not reveal any overall trend.  The first graph in this report (“Average Daily Temperature in Tallahassee, FL 1995-2008”) does not show an overall trend either.  This is good evidence that the series is stationary.
However, a more rigorous test would be to look at the sample autocorrelation function.  This function shows us how much interdependency there is between neighboring data points in the series.  For a stationary series, the autocorrelation function must approach 0 as the displacement gets large.  The sample autocorrelation function is an estimate of the autocorrelation function.  The sample autocorrelation function for our data set is shown below for lags 0 to 50.
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The correlogram shows that the sample autocorrelation function falls to zero after two displacements.  The first two points (0.61 and 0.18) are significantly larger than zero, so we can be fairly certain that the true autocorrelation coefficient is greater than zero.  Thus, we can conclude that the series is not a white noise process and is stationary.  The pattern also suggests that the data could be modeled by an autoregressive model of order one, two or three. 
Model Specification and Estimation
The graphs we have looked at so far indicate that today’s temperature depends on the temperature over the past few days; now we need to determine the smallest number of proceeding days needed to model a day’s temperature. It appears this number is at least one and could be as large as three. We ran a linear regression of the temperature on the temperature for the past one, two and three days. The results are summarized below:

Regression #1:  Tempt = A + B (Tempt-1) 

	Regression Statistics

	Multiple R
	0.607

	R Square
	0.368

	Adjusted R Square
	0.366

	Standard Error
	5.676

	Observations
	364

	F
	210.77

	 
	Coefficients
	Standard Error
	t Stat

	Intercept
	26.4219
	2.8211
	9.3657

	X Variable 1
	0.6065
	0.0418
	14.5180


Regression #2:  Tempt = A + B (Tempt-1) + C (Tempt-2)
	Regression Statistics

	 Multiple R 
	0.652

	 R Square 
	0.428

	 Adjusted R Square 
	0.425

	 Standard Error 
	5.414

	Observations
	363

	F
	134.66

	 
	Coefficients
	Standard Error
	t Stat

	Intercept
	34.5676
	3.0005
	11.5205

	X Variable 1*
	0.7960
	0.0504
	15.8037

	X Variable 2
	(0.3106)
	0.0505
	(6.1542)


Regression #3:  Tempt = A + B (Tempt-1) + C (Tempt-2) + D (Tempt-3)

	Regression Statistics

	Multiple R
	0.669

	R Square
	0.448

	Adjusted R Square
	0.443

	Standard Error
	5.324

	Observations
	362

	F
	96.82

	 
	Coefficients
	Standard Error
	t Stat

	Intercept
	28.3055
	3.4550
	8.1925

	X Variable 1*
	0.8499
	0.0520
	16.3405

	X Variable 2
	(0.4496)
	0.0646
	(6.9560)

	X Variable 3
	0.1786
	0.0522
	3.4200


*This is the temperature for the previous day.
The regression statistics show the following:

· The t-values for the past day’s temperatures are always very high,
· The F statistic is very high in the first regression and decreases as we add more X variables;

· The R-squared changes significantly from 1-variable regression to 2-variable regression, but does not change significantly as we add the third days’ temperature to the regression;

· The standard error does not materially decrease as we add more X variables.

The first two items indicate that there is a relationship between the temperatures on two consecutive days.  The last two items indicate that adding day 2 improves the regression, but adding day 3 to the regression does not materially improve the results. So, while there may be some correlation between today’s temperature and the temperature three days ago, it is not significant enough to justify the additional variables.
Based on the analysis we have performed so far, it appears that an AR (2) model is most appropriate for our data.  Let us look at the results of a few more statistical tests.
Durbin-Watson Test

We performed the Durbin-Watson test, which tests the null hypothesis that there is no serial correlation. The following are the results for the three regressions:
	Number of X Variables
	Durbin - Watson Statistic
	dl
	du
	Result

	1
	                  1.62 
	1.82
	1.83
	       Reject

	2
	                  1.88 
	1.82
	1.84
	Accept

	3
	                  1.94 
	1.81
	1.84
	Accept


We can accept the null hypothesis of no serial correlation for the last two regressions but reject the null hypothesis for the first regression. This confirms our results based on R-square and t statistic.
Box-Pierce Q Statistic

Next we calculated the Box-Pierce Q Statistic for the residuals of the three regressions.  This statistic tests the joint hypothesis that all of the autocorrelation coefficients are zero; i.e. that the residuals have been generated by a white noise process.
The following are the results for k=120:

	Number of X Variables
	Box-Pierce Q Statistic
	Critical 10% Level
	Result

	1
	              112.70 
	140.23
	Accept

	2
	                91.81 
	140.23
	Accept

	3
	                72.02 
	140.23
	Accept


We can accept the null hypothesis of white noise residuals for all three regressions.

Discussion

Our analysis has shown that an AR (2) model is the most appropriate choice for our data.  And AR (3) model also seems appropriate, but if we want the simplest model that is sufficient AR (2) is the best choice.
Looking at the data itself, this conclusion makes sense intuitively.  For the majority of 1995, the (seasonally adjusted) temperatures stay close to the average and whenever there are unseasonable temperatures – spikes or dips in the graph – they last only two or three days.  
However, the temperature in January, February and December oscillate a lot.  Overall, we would consider the weather pattern during these periods unusual and difficult to model. The residuals for all three regression models are very high for these x-values.
Thus, we conclude that the best model we can produce using simple techniques in Excel is an AR (2) model:

Yt = 34.5676 + 0. 7960Yt-1 – 0.3106Y t-2
where Y is the seasonally-adjusted temperature in Tallahassee, FL.
Finally, it is important to point out that this model does not do a great job of predicting temperature. Even for the period of 1995, the values constructed by the model are often significantly different from the actual temperature.  In other words, the residuals are high.  Further studies are needed to obtain a better model with more data and other software such as SAS-ETS. 
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