Daily Temperature – Station 381549
XXXXXX XXXXXX
This project will look at average daily temperatures from Station 381549, one of the data sets provided by NEAS, and attempt to fit an ARIMA model to the data. Weather generally has a high positive correlation for most parts of the world.  The temperature mostly has minor changes day to day and depends on the time of year.
I decided to analyze years 1873 until 1898, which will give us 25 years of daily data.  analysis performed used only data for the complete years of 1995 through 2006.  The data used in the analysis contains a total of 9,130 data points, which will be large enough for all of the analysis we will be doing.
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There is a strong seasonal pattern to the data that is apparent in this graph, which is what we predicted above.  Before we do any analysis we will need to smooth and de-seasonalize the data.


The first thing I did was to smooth the data.  The raw data is fairly rigid, which could distort the de-seasonalization that we want to perform.  Here is a graph of the daily temperatures for the year of 1873 before and after the smoothing process.  The calculations behind this procedure can be found in my attached excel workbook on the “Data Organized” tab.  The graphs below are from the “Smoothing” tab.
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The smoothing that I did uses a 5 day moving average over 25 years, which yields 125 data points.  Now that we have smoothed the data we can de-seasonalize it.
I computed the seasonal index using the steps in section 15.2.2 in Economic Models and Economic Forecasts by Pindyck and Rubinfeld.  These calculations can be seen in detail on my “Data Organized” tab of my attached excel workbook.  The graphs below are from the “Seasonality” tab.
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[image: image5.emf]1874 Seasonally Adjusted
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This shows the information seasonally adjusted, so now we must make sure the data is stationary before continuing.  I will be using the initial graph will all model point and the “1874 Seasonally Adjusted” graph for this analysis.   There does not seem to be an overall trend in 1874, which is also confirmed by the graph of all model points.  This suggests that the model is stationary, but we will examine the sample auto correlation function just to make sure.   The sample auto correlation function should start positive and move towards zero.  From the graph below, showing the data produced on the “data organized” tab. 
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The corellogram shows the sample correlation function falls to zero after two displacements.  The first couple points are significantly larger than zero so we can assume the true autocorrelation is greater than zero, and the process is not white noise.  The pattern also suggests the data may be modeled by an AR(1) or AR(2) model.


The analysis thus far indicates that the temperature depends on the temperature the few days before.  To determine the least number of previous days we will run a linear regression for the past one and two days, not more since the autocorrelation drops to near zero by the third offset.  Below are the results from the AR(1) and AR(2) regression anaylsis.
AR(1)

	Regression Statistics

	Multiple R
	0.6771

	R Square
	0.459

	Adjusted R Square
	0.457

	Standard Error
	5.115

	Observations
	364

	 
	Coefficients
	Standard Error
	t Stat

	Intercept
	21.2276
	2.5570
	8.3018

	X Variable 1
	0.6772
	0.0387
	17.5158


AR(2)

	Regression Statistics

	Multiple R
	0.723

	R Square
	0.5231

	Adjusted R Square
	0.520

	Standard Error
	4.811

	Observations
	363

	 
	Coefficients
	Standard Error
	t Stat

	Intercept
	28.5788
	2.6241
	10.8911

	X Variable 1
	0.9107
	0.0494
	18.4193

	X Variable 2
	-0.3454
	0.0494
	-6.9872


The regression statistics show three key things; the t values for the past day’s temperatures are always very high, the R-square does not significantly increase as we add the second days temperature to the regression, and the standard error does not significantly decrease.

The t values for the past day’s temperature being high shows a relationship while the last two things show that an AR(2) process is not sufficiently better than an AR(1) process.  Thus we will choose to use the simpler of the two models, the AR(1).


To finish off the analysis I have included tables for the Durbin-Watson test and the Box-Pierce Q Statistic.
	Number of X Variables
	Durbin - Watson Statistic
	dl
	du

	1
	                  1.532 
	1.65
	1.69

	2
	                  1.944 
	1.63
	1.72


	Number of X Variables
	Box-Pierce Q Statistic
	Critical 10% Level

	1
	              61.96
	140.23

	2
	              47.71
	140.23


These two tables show that there is no serial correlation and that the residuals were generated by a white noise process for both models respectively.  For the DW test I used N = 100 because it is the largest N provided in the table, and K = 120 for the BPQS for the same reason.

All of the analysis that was done shows that both AR(1) and AR(2) models are good choices to model our data.  Because there is no significant difference between the two we will choose the simpler of the two and go with an AR(1) model.  Given basic knowledge of temperature and weather, this makes sense.  There are not usually many severe swing in temperature over a 24 hour period.

When we use this model, also shown as Y​t = 21.2276 + 0.6672Yt-1, it does not do a great job of predicting the actual temperatures we see in the known data.  Thus it should probably not be used to predict future temperatures, but it has shown that unseasonable temperatures do have an effect on future temperatures, which was the point of the exercise. 
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