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Daily Temperature in Fredonia, NY (Station 303033)

My husband is originally from upstate NY very close to Fredonia, NY and since meeting him I have been intrigued by the weather there.  His family still lives there so I’ve been able to see for myself that the winters are extremely cold with large amounts of snow, and the summers do get reasonably warm.

Therefore, my project will focus on the high temperature in Fredonia, NY over a period of time.  I will examine the inherent seasonality of the data as well as try to fit an appropriate ARIMA model to the data.
Data
The data used in this analysis was collected from the NEAS website.  I am using the data for station 303033 (Fredonia, NY).  The time period is 1/1/1973 through 12/31/1979.  My husband was born in 1976, so this range includes that year and the three years before and after.  I have removed the date of February 29, 1976 to simplify the seasonality calculations so there is a total of 2,555 data points.  This is large enough of a sample to produce relevant results.

“Graph1” below shows the raw data, which can also be found on the ‘Raw Data’ tab of the spreadsheet.
Please note that all graphs can also be found on the ‘Graphs’ tab of the spreadsheet.

[image: image1.emf]Graph1 - Daily Temperature at Station 303033
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As one would expect, there is a strong seasonal pattern to the data.  Because the seasonality is so visually evident, I will not examine the autocorrelation function at this time, and will instead proceed directly to de-seasonalizing the data.
Seasonality Adjustment
Prior to de-seasonalizing the data, I will smooth it to remove the jaggedness in the curve of the raw data.  To do this, I used a centered moving average of the day, the three days prior, and the three days following over the 7 years of data.  The calculations can be found on the ‘Seasonality Adjustment’ tab

“Graph2” below shows the smoothed daily temperature.

[image: image2.emf]Graph2 - Station 303033 Smoothed Daily Temperature
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The next step in de-seasonalizing the data was to create the factors for the seasonality adjustment.  I calculated these factors by dividing the smoothed daily temperature by the average for all the data, which was 57.6 degrees F.  Then, I calculated the seasonally adjusted temperature for each day in the 7 year data set by dividing each day’s temperature by the corresponding seasonality adjustment factor.
In theory, this type of adjustment removes the inherent seasonal fluctuations (very cold temperatures in winter months, and warmer temperatures in summer months) and puts it all on a level playing field.

For illustration, I will use 1979.  Graph3 below shows the raw data for 1979, and Graph4 shows 1979 after it has been seasonally adjusted.

[image: image3.emf]Graph3 - Unadjusted 1979 Data
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[image: image4.emf]Graph4 - Seasonally Adjusted 1979 Data
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Now that the data has been seasonally adjusted, we must check that the series is stationary.  Visually, there does not seem to be a trend in the seasonally adjusted 1979 data, but we will check to be sure.  To do this, we will inspect the sample autocorrelation function.

Sample Autocorrelation
We will examine seasonally adjusted 1979 data only for the sample autocorrelation, just to make working with the data less unwieldy.  “Graph5” below shows the results for the first 50 lags.  This graph will show us how dependent each data point is on the ones around it.  The sample autocorrelation was calculated using the VBA macro that NEAS so generously provided.  Details can be found on the ‘Correlation’ tab.
[image: image5.emf]Graph5 - Sample Autocorrelation
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The sample autocorrelation function falls close to 0 after 5 lags.  Since the first several lags are definitely greater than 0, this suggests that the true autocorrelation is greater than 0.  Because of this we can assume that the data is stationary and not white noise.

Autoregressive Modeling
The fact that the sample autocorrelation function does not fall to zero until after five lags suggests that the model is AR(1), AR(2), AR(3), AR(4), or AR(5).  I will start with the regression of just the prior one, two, and three days.  If the AR(3) model produces significant improvement when compared to the AR(1) or AR(2) models after taking the principle of parsimony (“simple is best”) into account, then I may continue to model AR(4) and AR(5).  Below are the results from the AR(1), AR(2), and AR(3) linear regressions.

AR(1)
[image: image6.wmf]Regression Statistics
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Key findings from the regression analysis:

· In all three models, the t-value is quite high for the prior day’s temperature (X Variable 1).

· From AR(1) to AR(2) and from AR(2) to AR(3), the R-square value does not increase significantly.  This suggests that the AR(2) and AR(3) models are not significantly better than the AR(1) model.

· The standard error does not significantly decrease from AR(1) to AR(2) to AR(3).

These findings suggest that the AR(1) model would be the best for this series.  This is mainly due to the principle of parsimony.  More detailed results for each regression can be found on the ‘AR(1)’, ‘AR(2)’, and ‘AR(3)’ tabs of the attached spreadsheet.  Because AR(2) and AR(3) do not add enough credibility to the model to be used, I will not move forward with modeling AR(4) and AR(5) either.

To further validate these results, I will produce the Durbin-Watson and Box-Pierce Q statistics.  The Durbin-Watson and Box-Pierce Q statistics test the null hypothesis that a white noise process is formed by the regression residuals and that there is no serial correlation.
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The Durbin-Watson and Box-Pierce Q statistic results show that we cannot reject the null hypothesis that there is no serial correlation.  For both the D-W and BPQS, I used k=100 and varied the degrees of freedom for BPQS as necessary.

These results reinforce my earlier logic that it would be best to use the AR(1) model based on parsimony.
The equation for the model can be shown as:  Yt = 18.751 + 0.674 Yt-1
“Graph6” below shows the graph of the actual temperature for 1979 along with the estimated temperature based on the AR(1) equation above.  Details can be found on the ‘1979 Forecast’ tab.
[image: image11.emf]Graph6 - 1979 - Actual vs Estimated Using AR(1)
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One can see that the equation does a fair job of estimating the temperature over the course of the whole year, but a poor job on a day to day basis in many instances.  The graph does serve to show however that unseasonable changes in temperature do have an effect on the following days.  Luckily, meteorologists have much more sophisticated forecasting techniques that are far beyond the scope of this project.
