VEE Student Project
Time Series
xxx xxxxx xxx xxxxxx
Daily Temperature in Hong Kong
Objective

This project will look at average daily temperatures for Hong Kong, attempt to fit an ARIMA model to the data and try to determine how the temperature for any given day relates to past weather.
Data 

Data was obtained from the University of Dayton daily temperature archive.  The database used in this project contained average daily temperatures for the period of January 1, 1995 to May 26, 2009.  However, all of the analysis performed used only data for the complete years of 1995 through 2008 with a total of 5,114 data points.
The following is a graph of the data:
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There is a strong seasonal pattern to the data since Hong Kong is city with four seasons: cold in winters and hot in summers.  Therefore, I will proceed to de-seasonalize the series.

Seasonal Adjustment 
Before we de-seasonalize the data, we smooth the data.  The raw data distorts the seasonality.  To correct for this, we use a multi-year centered moving average. I averaged the daily temperature over 70 days – a 14 year average of the date and the two preceding and the two following days. For example, the smoothed temperature on June 6 is the average of the temperatures on June 4-8 for 1995-2008.  Below is a graph of the smoothed daily temperature:
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Next, I computed the seasonal index for each day by dividing the smoothed temperature for that day by the overall average for the data set (75.4).  I then computed the seasonally adjusted temperature for each day by dividing that day’s temperature by the corresponding seasonal index. For example, the seasonal index for August 1 is 1.138 (85.8/75.4).  The seasonally adjusted temperature for August 1, 1995 is then 74.1 (84.3/1.138).  This makes sense because August 1st is hotter than the average day, so its index is higher than one and the seasonally adjusted temperature is close to the overall average.
This process removes the seasonal variations and “flattens” the data curve.  The effect can be seen by looking at one year of data; compare the raw data with the seasonally adjusted data for 1995 below. 
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[image: image4.emf]Seasonally Adjusted Temperature 1995
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Sample Autocorrelation Function
Now we model the temperature in 1995 only to make the data more manageable. 

First, we need to determine if the series is stationary.  Examining the graph of the data above (“Seasonally Adjusted Temperature, 1995”) does not reveal any overall trend.  The first graph in this report (“Average Daily Temperature in Hong 1995-2008”) does not show an overall trend either.  This is good evidence that the series is stationary.
However, a more rigorous test would be to look at the sample autocorrelation function.  This function shows us how much interdependency there is between neighboring data points in the series.  For a stationary series, the autocorrelation function must approach 0 as the displacement gets large.  The sample autocorrelation function is an estimate of the autocorrelation function.  The sample autocorrelation function for our data set is shown below for lags 0 to 50.
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The corellogram shows that the sample autocorrelation function falls to zero after two or three displacements.  The first three points (0.68, 0.35, and 0.15) are significantly larger than zero, so we can be fairly certain that the true autocorrelation coefficient is greater than zero.  Thus, we can conclude that the series is not a white noise process and is stationary.  The pattern also suggests that the data could be modeled by an autoregressive model of order one, two or three. 
Model Specification and Estimation

The graphs we have looked at so far indicate that today’s temperature depends on the temperature over the past few days.  It appears the smallest number of proceeding days needed to model a day’s temperature is at least one and could be as large as three.  The results of linear regression of the temperature on the temperature for the past one, two and three days are summarized below:

Regression #1:  Tempt = A + B(Tempt-1) 

	Regression Statistics

	Multiple R
	0.681 

	R Square
	0.464 

	Adjusted R Square
	0.463 

	Standard Error
	2.529 

	Observations
	364 

	F
	0.681 

	 
	Coefficients
	Standard Error
	t Stat

	Intercept
	23.6040 
	2.8516 
	8.2775 

	X Variable 1
	0.6811 
	0.0385 
	17.7039 


Regression #2:  Tempt = A + B(Tempt-1) + C(Tempt-2)
	Regression Statistics

	 Multiple R 
	0.698 

	 R Square 
	0.487 

	 Adjusted R Square 
	0.484 

	 Standard Error 
	2.480 

	Observations
	363 

	F
	0.698 

	 
	Coefficients
	Standard Error
	t Stat

	Intercept
	28.5304 
	3.0518 
	9.3488 

	X Variable 1
	0.8220 
	0.0516 
	15.9412 

	X Variable 2*
	-0.2074 
	0.0516 
	-4.0192 


Regression #3:  Tempt = A + B(Tempt-1) + C(Tempt-2) + D(Tempt-3)

	Regression Statistics

	Multiple R
	0.701 

	R Square
	0.492 

	Adjusted R Square
	0.488 

	Standard Error
	2.470 

	Observations
	362 

	F
	0.701 

	 
	Coefficients
	Standard Error
	t Stat

	Intercept
	28.2400 
	3.3886 
	8.3339 

	X Variable 1
	0.8253 
	0.0525 
	15.7133 

	X Variable 2
	-0.2107 
	0.0672 
	-3.1332 

	X Variable 3*
	0.0041 
	0.0526 
	0.0773 


*This is the temperature for the previous day.
The regression statistics show the following:

· The t-values for the past day’s temperatures are always very high,
· The F statistic is very high in the first regression and decreases as we add more X variables;

· The R-squared does not significantly increase as we add the second and third days’ temperature to the regression;

· The standard error does not materially decrease as we add more X variables.

The first two items indicate that there is a relationship between the temperatures on two consecutive days.  The last two items indicate that adding day 2 and day 3 to the regression does not materially improve the results. So it is not significant enough to justify the additional variables.
Based on the analysis we have performed so far, it appears that an AR(1) model is most appropriate for our data.  Let us look at the results of a few more statistical tests.
Durbin-Watson Test

It tests the null hypothesis that there is no serial correlation. The following are the results for the three regressions:
	Number of X Variables
	Durbin - Watson Statistic

	1
	                   1.7185  

	2
	                   1.9787

	3
	                   2.0107  


As the three Durbin Watson Statistics are close to 2, we can accept the null hypothesis of no serial correlation for all three regressions.

Box-Pierce Q Statistic

The statistic tests the joint hypothesis that all of the autocorrelation coefficients are zero; i.e. that the residuals have been generated by a white noise process.
The following are the results for k=150:

	Number of X Variables
	Box-Pierce Q Statistic
	Critical 10% Level

	1
	 136.05 
	 171.51 

	2
	119.2813048
	171.51

	3
	123.4583398
	171.51


We can accept the null hypothesis of white noise residuals for all three regressions.

Summary
The best model we can produce using simple techniques is an AR(1) model:

Yt = 0.6811Yt-1 + 23.6040
where Y is the seasonally-adjusted temperature in Hong Kong.
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