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Introduction

Our nations ongoing financial crisis has certainly taken a toll on the insurance industry. Starting from the fourth quarter of 2008, we have seen so many life insurer got downgraded. Some experts afraid that negatives news about the industry, especially negative investment performance and poor capitalization, might have a direct impact on the surrender activities: i.e. the number of surrenders will likely to increase. While others, claiming that negative returns on the equity market will actually benefit the insurance industry by drawing more customers to consider purchase (or not surrender) this safer investment vehicle. Various factors can potentially affect the number of surrenders within a specific amount of time, for example pricing competitiveness, dividend scale, and overall market trend. Such a model can be difficult to build and might have little use. (For example, although we can almost certainly say that a high dividend scale can result in less surrender, we can change the dividend scale merely for minimizing surrenders)

In this project, I will try to apply the time series analysis to the daily number of surrenders in an insurance company. 

Data

I will use real data from my work in this project. This analysis is something that I wanted to do for a long time, but would prefer to do it not using company time. I am very glad that I have this opportunity to apply what I learned from this course to my work. However, in order to comply with company policy,  I decided to scale my data by a magic constant factor. This method is widely used in research papers because it can still preserve the statistical feature of data. Please see the data in the attached excel file (tab "original data").

The first column is the date. I started tracking these number on Sept 19th,2008, several days after the bankruptcy filing of Lehman Brothers. The excel file has surrender data for every business day until May 22nd, 2009. That a total of 170 data points. I do have continuing data points after May 22nd, but I decided to use them as a check against my model forecasts. 

The second column is labeled "Number of Non-1035 Exchange Surrenders". For those who are not familiar with Life Insurance, 1035 exchange means a policyholder surrenders his/her policy but actually switch to another insurer for a similar type of product. This study only cares about those policy surrenders that might be caused by the economy downturn, so I decided to exclude those who surrender because they want to switch to a different company.  The graph below is a plot of daily number of surrenders on a time line:
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After a general observation, I did not see any obvious trend from the data, although the graph seems to be rather volatile.  The black solid line in the graph is a linear trend line. As we can see from the graph, the trend line is virtually flat. From visual observation, the data is stationary.

Model Specification

Although the visual observation shows that my data set is stationary, we still would like to test it statistically. To do this, we need to calculate the autocorrelation. Please refer to the "Autocorrelation" tab of the enclosed spreadsheet for step by step calculations. 
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The above graph shows the correlogram of my data. From the plot, we can see that the values in correlogram quickly drop to around 0 and in later lags appear to be geometrically declined and sinusoidal. at this point we can confidently conclude that this series is stationary. 

The text book told us that the autocorrelation function for a Moving Average process MA(q) has q non-zero values and is 0 for k > q. Apparently from the correlogram this series does not look like a Moving Average model. Nevertheless, later we will try a MA(1) model just for illustration purpose.

The correlogram does look somewhat similiar for an auto-regressive process. So the next question is that how many order does this process resemble. From the spreadsheet it seems that for the first several lags, positive number and negative number does alternate, which is the characteristic for an AR(1) process. However, starting from approximately lag 7, the autocorrelation function did not return negative until lag 17. After lag 17, it seems that the positive/negative alternation resumes again. Later on, the correlogram looks more like a AR(2) process, similar to the AR(2) autocorrelation function found on page 532 of the textbook. After all these observations we realized that the true process might be much more complicated than just a AR(1) or AR(2) process. We suspect that the true process might be a high-order Autoregressive process or maybe a ARMA process. 

The principle of parsimony told us that if the added variable cannot improve the model significantly, we should use a simpler model instead. So in the next session we will test simple models like AR(1), AR(2), MA(1) as well as some more involved models to decide the best model for this series. 

Model Analysis

Although previously stated as unlikely model choice, we would like to start with a simple MA(1) process. Please refer to the tab “MA(1)” in the spreadsheet. 

	 
	Coefficient
	Std. Error
	t-Statistic
	Prob.

	 
	
	
	
	 

	c
	42.8354552
	1.073653
	39.89694419
	0

	MA(1)
	0.107496995
	0.0767
	1.401523911
	0.162902

	 
	 
	 
	 
	 

	R-squared
	0.013012
	
	Mean dependent var
	42.829412

	Adjusted R-squared
	0.007137
	
	S.D. dependent var
	12.692087


Not surprisingly, the MA(1) model provides a very poor fit to the model, as we can see from the extremely poor R-square stats. The main reason that MA(1) is a poor fit is because the huge variance of our data. One can refer to the “Actual vs. Fitted” graph of the MA (1) tab of the attached spreadsheet: the MA(1) model basically failed to catch any sharp up and down movement of the real data.

As stated early, I believe that an AR(p) model will probably work much better. Next I will illustrate several different orders of auto-regression in order to select the best fit. All the auto-regressive models can be represented as the following:
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where 
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As indicated in the previous section, some natural choices of p values are p= 1, 2, 3 and some even larger numbers. I ran 5 different choice of p values for AR(p) models and please see the results in the table below. 

	Model
	R-squared
	Adj R-squared
	sum of residual squared
	Durbin-Watson Stat

	AR(1)
	0.014639
	0.008738
	26678.709806
	1.973785

	AR(2)
	0.020126
	0.008249
	26105.423679
	1.954994

	AR(3)
	0.027492
	0.009593
	25714.159783
	1.984462

	AR(8)
	0.073388
	0.024937
	24400.618359
	2.000508

	AR(12)
	0.084026
	0.008221
	23856.878974
	2.007378


For each model that is represented in this table, you can find a corresponding tab in the excel spreadsheet. I used a third-party ARIMA model add-in ([WEB: REG]) to excel to solve these parameters. For AR(1) model, I also used the Excel built-in regression tool from the “Analysis ToolPak” to verify my answer. The result from “Analysis TookPak” is identical to the result I get from [WEB: REG].

We can see from the table that as p increases, the R-square increase, and sum of residual squared decreases. However, to my surprise, the overall performances of R-square stats are extremely poor. With R-square data ranging from 0.01 to 0.08, it seems that a pure auto-regressive model is unable to describe the original time series. If we were to choose one model specification out of these five, AR(8) seems to be slightly better than the rest, because it has the highest adjusted R-squared number. But even with AR(8), the adjusted R-squared stat is merely 0.025, far from the acceptable range of adjusted R-squares of correctly specified models. But before we conclude that time series analysis is not suitable for the original dataset, I would test some more complicated ARMA(p,q) process.  

An ARMA(p,q) process can be represented as the following:
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which is basically an auto-regressive process with order p plus a moving average process with order q. To test if an ARMA structure significantly improves our model, I first tested a ARMA(1,1) process.  

	 
	Coefficient
	Std. Error
	t-Statistic
	Prob.

	 
	
	
	
	 

	c
	42.79370582
	1.001424
	42.73285353
	-4.44E-16

	AR(1)
	-0.785251042
	0.148978
	-5.270928345
	4.17E-07

	MA(1)
	0.849505861
	0.132415
	6.415489027
	1.41E-09

	 
	 
	 
	 
	 

	R-squared
	0.030774
	
	Mean dependent var
	42.757396

	Adjusted R-squared
	0.019097
	
	S.D. dependent var
	12.694921


Again to my disappointment, ARMA(1,1) failed to improve the fit to original data. Although ARMA(1,1) boosts better R-squared stats than either AR(1) or MA(1), the improve is not significant at 0.03. Also, I noticed that ARMA(1,1) constructs a worse fit than some of the high order auto-regressive process, for example, AR(8) and AR(12).

Fortunately the third-party add-in [WEB:REG] is powerful enough that I can try out different combinations of p and q easily. So after repetitive trials the best model specification is revealed. If time series technique is to be used on the original data, the model that fits the data best is ARMA(8,3). Please see the result below:

	 
	Coefficient
	Std. Error
	t-Statistic
	Prob.

	 
	
	
	
	 

	c
	43.19831629
	2.340911
	18.45363791
	1.11E-16

	AR(1)
	-0.082912565
	0.107319
	-0.772582392
	0.441002

	AR(2)
	0.484978755
	0.107186
	4.524651855
	1.23E-05

	AR(3)
	-0.628478067
	0.095146
	-6.605405218
	6.68E-10

	AR(4)
	0.085794857
	0.080405
	1.067038931
	0.287692

	AR(5)
	0.929423724
	0.073818
	12.59069339
	1.11E-16

	AR(6)
	-0.169196475
	0.090854
	-1.862283584
	0.064546

	AR(7)
	-0.01499075
	0.084033
	-0.178390367
	0.85866

	AR(8)
	0.200051484
	0.084438
	2.369215073
	0.019116

	MA(1)
	0.238494552
	0.077577
	3.074278378
	0.002513

	MA(2)
	-0.383179221
	0.084179
	-4.551943664
	1.1E-05

	MA(3)
	0.638483618
	0.062439
	10.22578165
	-4.44E-16

	MA(4)
	-0.078931618
	0.097398
	-0.810403787
	0.419009

	MA(5)
	-0.948116812
	0.079928
	-11.86217143
	4.44E-16

	 
	 
	 
	 
	 

	R-squared
	0.241299
	
	Mean dependent var
	42.845679

	Adjusted R-squared
	0.174656
	
	S.D. dependent var
	12.789053

	S.E. of regression
	11.618656
	
	Akaike info criterion
	7.825557

	Sum squared resid
	19978.990350
	
	Schwarz criterion
	8.092386

	Log likelihood
	-619.870097
	 
	Durbin-Watson stat
	1.967926


With a R-square of 0.2413 and adjusted R-square of 0.1747, this model is significantly better than all of our previous models. Of course, on the other hand, ARMA(8,5) is also significantly complicated than all previous models. Let us take a look of the “Actual vs Fitted” graph:

(All the works for this model is under the tab of “Best Scenario” in the attached excel spreadsheet)
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A very big advantage of this model is that it captures almost all the big hikes in daily surrender numbers. For example, at the 41st, 100th, 155th and 165th data points, this model offers impressive fit to the actual data. On the other hand, a huge drawback of this (and almost all time series model specifications) is that one negative number does occur while in reality negative number of surrender is impossible. 

Conclusion

The original dataset of this project is the daily number of policies that get surrendered by the policyholder. I used real data dating back to September 19th, 2008. I have a total of 170 data points. The purpose of this project is to see if a time series model can be found to explain the original data. I first determined that this series is stationary, and then tried many different specifications of time series model to fit the data, including moving-average models, auto-regressive models and ARMA models. Among all the models, the one works best is ARMA(8,5) which is itself very complicated. However, even this model only achieves an R-squared stat of 0.24 and Adjusted R-square stat of 0.17. It has become obvious that these time series models are not the optimal choice for this series. 

One of the reasons why time series analysis is of little use is the nature of the data. This study tracks the number of policies that was surrendered daily, not the total cash value or face amount. Sometimes, one group of policy holders (for example, a corporation) might surrender many smaller cases, causing a big spike on the graph. I suspect if I use total cash value or face amount instead of policy count, I might get a better answer. 

There is also a pretty big chance that time series analysis just does not work as well as multiple regression analysis. If I was to use multiple regression analysis, for example, I could use independent variables like: S&P 500 data on the previous day; interest rate on the previous day; number of policies that are on policy anniversary date (most likely a dummy variable), among many others. In fact that would also be a very interest project to work on, although the amount of work involved might make it less appealing. 
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