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U.S. Retail Gasoline Prices, 1991-2008

For this project, I studied gas prices in the U.S. from the beginning of 1991 through the first part of 2008 in an attempt to come up with a successful model for forecasting future U.S. gas prices.  The data I examined came from the NEAS website (TS Sproj: Weekly gasoline prices (U.S. and East Coast), EconoMagic tab).  I copied the data into my worksheet at the left side of the Original Data tab.  I decided not to use the 1990 data that was available since there seemed to be a gap between December 3rd and January 21 of 1991.  (I put the data in my sheet but gave it a gray background).  Additionally, I decided to separate the data from October 2007 through April 2008 (light yellow background) so that I could use it in diagnostic checking of my model.

I began my work by making a chart of the data with price in cents on the y-axis and number of weeks on the x-axis in order to determine whether I had a stationary series.  
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It was clear just from eyeballing the graph that the series was not stationary.  It had a clear upward trend.  In fact, it looked like this series, which I’ll refer to as yt, may have followed an exponential growth curve.  It is interesting that the prices seemed to have stayed fairly flat for the first 400 weeks or so, and then they seemed to have risen fairly steadily (with a few ups and downs).  It looked to me like the right half of the graph may have followed a linear trend model, so I decided to focus on that data.  In fact, somewhere around week 575 it looked like the graph hit what would be a low from that point on, and the prices began rising in a somewhat steady manner.  In looking back at the data, it looked to me like that low point actually occurred at week 569, which corresponded to 12/17/2001.  Below is a graph of the selected data (12/17/2001 through 10/29/2007).  The weeks have been renumbered so that 12/17/2001 is now considered week 0.
[image: image2.emf]Selected Data, 12/17/2001 to 10/29/2007
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Once I had selected the data I wanted to use in my study, I needed to determine whether the series was stationary before I could pick an appropriate model.  I began by calculating the sample autocorrelation function for k = 1 lag to k = 306 lags.  I then plotted the results so that I had a correlogram to examine.
[image: image3.emf]Correlogram, Selected Data
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Although the values of the autocorrelation function for successive lags do eventually drop off and approach zero, they do so very slowly.  The first time the value of the autocorrelation reaches zero is around lag 112.  This led me to the conclusion that I was not working with a stationary series.  In order to obtain a stationary series, I tried differencing the selected series of data.  Below is a graph of the first differences.
[image: image4.emf]First Differences
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Differencing the series seemed to have eliminated the upward trend.  The resulting series looked much more stationary (except for the large spikes close to week 199).  I then calculated the sample autocorrelation function values up to 306 lags and created the correlogram shown below.
[image: image5.emf]Correlogram, First Differences
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The recurring spikes in both of the above graphs made me think that there may be some seasonality in the data.  It was not surprising to find seasonality in gas prices since I know from experience that gas prices tend to go up around holidays and in the summertime.  Because I had a series of weekly data points, I decided to look at the 52-week differences in an attempt to remove the seasonality.  Below is a graph of the 52 week differences, followed by a correlogram for the 52-week difference data.  The shape of the graph of the values of the sample autocorrelation function indicated that I had a stationary series.  It was then possible to begin modeling the series.
[image: image6.emf]52-Week Differences
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[image: image7.emf]Correlogram, 52-Week Differences
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Because the values of the sample autocorrelation function shown in the above graph dropped off fairly quickly (geometrically) and settled around zero, I decided to use an autoregressive model for the series.  In the AR models tab I determined the intercepts and slopes for an AR(1) model and an AR(2) model.  Below are the results I came up with.

For the AR(1),  yt = 1.3244 + 0.9570y(t-1).  Adjusted R-squared = 0.9088.

For the AR(2), yt = 1.0246 + 1.2407y(t-1) - 0.2784y(t-2).  Adjusted R-squared = 0.8982.

The adjusted R-squareds seem to indicate that both of these models fit the data well, with the AR(1) yielding a slightly better fit.


Once I had determined the coefficients and adjusted R-squareds for each model, I calculated the Durbin-Watson statistic for each model to test for the presence of serial correlation.  It was my hope that the DW statistics would be close to 2, indicating that no serial correlation was present.  The DW statistic for the AR(1) process was 1.2971, while the DW statistic for the AR(2) process was 1.8783.  (See the DW Tests tab in the Excel spreadsheet for calculations).  The Pindyck/Rubinfeld text states, “Exact interpretation of the DW statistic is difficult because the sequence of the error terms depends not only on the sequence of e’s but also on the sequence of all the X values.”  Realizing that there is a region of indeterminacy around the center of the range of DW statistics (2) in which “it is possible that the seeming correlation of the errors is due to the serial correlation of the independent variable, not to the serial correlation of the error terms,” it seemed possible that there could be no serial correlation of the error terms in either of these models.  However, the AR(1) DW statistic of 1.2971 aroused more suspicion that such correlation exists than did the AR(2) statistic of 1.8783, which seemed much more likely to be in that range of indeterminacy.  The table on page 610 of the textbook gives five percent significance points of dl and du for the Durbin-Watson test.  I had 253 observations—more than twice the maximum number of 100 in the table.  Nevertheless, it seemed apparent from the table that I had to reject the hypothesis that no serial correlation was present in the AR(1) model, but I was able not  to reject the hypothesis that no serial correlation was present in the AR(2) model.

I also calculated the Box Pierce Q statistic for each model in order to test whether the residuals of each model resemble a white noise process.  On the Box Pierce Tests tab my calculations for each model can be found.  I calculated the residual autocorrelations from k=1 to k=20 for each model (the calculations for the AR(2) model begin in column AE).  The Q statistic for the AR(1) (highlighted in yellow in AB1) was 106.2991.  Since the Q statistic is approximately distributed as chi-square, I needed to look up the critical number for K-p = 20-1=19 degrees of freedom.  At any percentile of the chi-square distribution, 106.2991 is much, much higher than any of the critical values found in the table.  This fact was distressing.  It seemed clear that I had to reject the hypothesis that the residuals for the AR(1) model came from a white noise process.  For 18 degrees of freedom, the critical number at the 99.5th percentile is 37.16.  The AR(2) model’s Q statistic of 40.7422 was much closer to this critical value, but it still exceeded it, which would cause me to reject the hypothesis that the residuals for the AR(1) model resemble a white noise process.

Although the adjusted R-squared was slightly lower for the AR(2) model (compared to the AR(1) model), the fact that its DW statistic indicated that there was no serial correlation among the residuals, as well as the fact that its Q statistic was much closer to the critical values in the chi-square table, led me to select the AR(2) model as the better model to use in my diagnostic checking.  I decided to use the six months of data I had purposely omitted from my study and the AR(2) process I had modeled to conduct an ex-post forecast of gas prices.
[image: image8.emf]Ex-Post Forecast, AR(2)
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The above graph shows that the forecast tracks the actual data pretty closely.  Although I was discouraged by the results of the Box Pierce test, the forecast and the resulting graph made me feel better about the possible validity of the AR(2) model to determine future gas prices.  Certainly my attempts to forecast gas prices were simplistic in comparison to what could be done by more experienced statisticians, but this project gave me a good feel for what it is like to go through the process of determining and specifying an appropriate model to use for forecasting.
