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Combined Regression – Time-Series Model to Forecast Mortgage Delinquency Rates
Objective

For my Regression Analysis project, I studied a relationship between unemployment and delinquency rates. I constructed a regression model to explain annual mortgage delinquency rates fluctuations.  The goal of this study is to provide an explanation for the part of the variance that cannot be explained economically by constructing a time-series model for the residual series of that regression equation.  
Data

Unemployment data was taken from Bureau of Labor Statistics.  I decided to use data for years 1970 to 2008 from the Current Population Survey.   Annual unemployment rate was derived by averaging monthly seasonally adjusted unemployment rate for persons 16 years of age and older.  
Unemployment data can be found on <UnemplData> tab of the attached workbook.

Data for mortgage delinquencies was obtained from various Mortgage Bankers Association of America reports found on the Internet.  Data for years 1970 to 1999 was found on the following website: http://www.allcountries.org/uscensus/814_mortgage_delinquency_and_foreclosure_rates.html
Annualised data for year 2002 to 2008 was obtained by averaging of quarterly figures for loans delinquent 30 days or more using MBAA surveys.  Delinquency and foreclosure data from the above sources can be found on <DelinqsData > tab of the attached workbook
Given the absence of data for years 2000 and 2001, I decided to split the data into two parts: data used for model calibration will be from 1970 to 1999 and data used for the ex post forecast will be 2002 to 2008.   I will also attempt to produce ex ante forecast for year 2009 using first quarter unemployment data available for Q1 2009.  
Regression equation

I previous study, I attempted to forecast mortgage delinquency rates (DR) using unemployment rate (UR) as an explanatory variable.  The regression equation was constructed as follows:

DP = 2.74+ 0.29UR

            (5.99)     (4.19) 


R² = 0.39
F = 17.54
DW = 0.45

A historical simulation of the above equation is shown in the following graph: 
[image: image1.emf]Graph 1: Historical Simulation using Regression Equation
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Note that the simulation tracks the general trend movement of the series but fails to predict a sharp increase in delinquencies in the year 2008.  The close up of an ex post forecast for years from 2000 to 2008 and an ex ante forecast for 2009 is provided on the graph below:

[image: image2.emf]Graph 2: Ex Post Forecast of Mortgage Delinquency Rates
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In my regression analysis research I concluded that the regression model was not successful in explaining the delinquency rates because of the likely high degree of error term correlation over time (due to the cumulative effects of the omitted variables).  By constructing a time series for the residuals of the regression equation, I should be able to improve model fit.
Time Series Model Specification

First I examined whether or not the residual series are stationary.   

Graph below shows the sample autocorrelation function of the residuals.  Detailed calculations can be found in the tab <SampleAutoCorr> in the attached Excel Spreadsheet TS_DelinqUnempl.xls.

[image: image3.emf]Graph 3:  Sample Autocorrelation Function of Regrression 
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The autocorrelation function falls off rather quickly, then oscillates and declines geometrically toward zero.  The shape of this autocorrelation function indicates stationary series that can be modelled by an autoregressive process with no need for differencing.  
Model Estimation and Diagnosis Checking

After estimating a variety of autoregressive models for this residual series I found that adding more than one lagged variable in the equation does not add explanatory power.  Thus, I will construct the time series for the residuals using AR(1) model specified as follows:
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where 
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 is the data at time t
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 is a constant
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 is the coefficients for lag i data
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 is the error term at time t
And it has a following estimated form:   AR(1): yt = 0.0399+ 0.7339yt-1 +εt  Note that 
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 (and is equal to the autocorrelation with lag 1) indicating that the fitted model is stationary.  Graph 4 below shows comparison of the original residual series and their model reproduction:
[image: image10.emf]Graph 4: Actual vs. Fitted Residual Series
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The R2 is 63%, the mean of fitted residuals is 0 and Durbin-Watson statistic of the residuals of the fitted series is 1.68.  For n=29, k=2 the 5% significance points are dl = 1.27 and du = 1.56.  Therefore, since du < DW< 2 we accept the null hypothesis of no serial correlation between residuals of the fitted model.  As a second test, I looked at the Box-Pierce Q statistic which has been calculated to be 9.9 with K=15.  This value is significantly below the χ2 statistic with 14 degrees of freedom at a 5% significance level of 23.68.  Detailed calculation of the above statistics can be found on the <AR(1)> tab of the attached spreadsheet. Sample autocorrelation function of the simulated series was calculated and compared to the original one in the < AR(1)AoutoCorr > tab.  The residuals of the fitted model and their sample autocorrelation function were computed in the <ResAoutoCorr> tab and are shown on the Graph 5:

[image: image11.emf]Graph 5: Residuals of the Fitted Model and their Sample Autocorrelation 
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  Given all these observations, I conclude that the AR(1) model fits the data well, is stationary, and its residuals resemble white noise. 
Forecast
Now my original regression model can be combined with the time-series model constructed for its residuals.  A historical simulation of the combined regression – time-series model for the mortgage delinquency rates is shown on the Graph 6:
[image: image12.emf]Graph 6: Simulation of Combined Regression - Time-Series Model 
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Note that mortgage delinquency is now tracked much more closely than before: the R2   increased from the original 39% to 75%. 

Finally, an ex post forecast is made for the years 2002 to 2008 and an ex ante forecast for the year 2009 (based on the assumption that the annual unemployment will be as high as the first quarter unemployment).  This forecast can be seen on the graph below:
[image: image13.emf]Graph 7: Ex Post Forecast of Mortgage Delinquency Rates: 
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This forecast follows actual data much closer than was the case when the regression model alone was used. 
Conclusion

The auto-regression model was fit to the residuals of the regression equation, significantly improving the fit of the predicted mortgage delinquency rates to the actual data.  Various statistics for the residual time-series model were computed, showing good model fit.  
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