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Time Series Final Project

Spring 2009

Project Overview: I will investigate several ARIMA models and select one to model time series data for Annual Vehicle Model Year loss cost increases for Collision coverage. 

Background: Personal automobile insurance companies typically have a Vehicle Model Year or Vehicle Age rating plan to account for differences in loss costs. The general idea is that newer vehicles cost more to repair than older vehicles, so there should be a set of relative factors to adjust the amount of premium charged to cover vehicles of various ages / model years. 

Recent insurance rate filings from Perr & Knight show annual model year / vehicle age increase factors for Collision coverage to be roughly 5% to 7% for most of the companies reviewed. These factors are typically applied multiplicatively: if a Model Year 2009 vehicle costs $1000 in written premium to insure annually, we expect a similar Model Year 2010 vehicle to cost $1000 x 1.07 = $1070. 

	Company
	COLL Annual Model Year Increase Factor

	Allstate
	7%

	USAA
	5%

	Liberty Mutual
	5%

	Farm Bureau
	5.3%

	Nationwide
	7%

	St. Paul / Travelers’
	5.3%

	State Farm
	4.3%

	Progressive
	0%

	AAA
	2%


A number of insurance companies have typically used an annual loss ratio exponential growth trend analysis approach to estimate model year factors. The general idea is that if rating plans are held fixed, then the only differences in year over year loss ratios is the annual increase due to model year effects. However, in this project, I will investigate potential to use ARIMA models (specifically, auto-regressive models of order 1 and 2, and moving averages of order 1 and 2) for model year factors estimation. My initial hypothesis is that such simple models will work quite well, since our best guess of next year’s model year factor is often close to this year’s model year factor. It is also possible, given this rough intuition, that model year factors follow a random walk without drift.

Tools: I will use SAS ETS 9.1 statistical software and SAS Enterprise Guide 4.1 as a data preparation and modeling environment for this project.

Data Preparation: I am using disguised loss ratio data as shown below (Loss Ratio = incurred annual losses / earned premium) for collision coverage in a standard auto book of business over a period of 15 years. I have applied several data transformations immediately for convenience including, taking the natural logarithm of the original loss ratio data, taking the first difference of loss ratio data, the first difference of log-transformed data, and second differences of loss ratio data and log-transformed loss ratio data. 
	TIME
	Loss Ratio (LR)
	Log LR
	First Difference LR
	First Difference LogLR
	Second Difference LR
	Second Difference LogLR

	0
	0.372
	-0.989
	 
	 
	 
	 

	1
	0.407
	-0.899
	0.035
	0.090
	 
	 

	2
	0.422
	-0.862
	0.015
	0.037
	-0.020
	-0.053

	3
	0.447
	-0.806
	0.024
	0.056
	0.009
	0.019

	4
	0.457
	-0.783
	0.011
	0.024
	-0.014
	-0.032

	5
	0.474
	-0.747
	0.017
	0.036
	0.006
	0.012

	6
	0.491
	-0.712
	0.017
	0.036
	0.001
	0.000

	7
	0.488
	-0.718
	-0.003
	-0.007
	-0.020
	-0.042

	8
	0.494
	-0.704
	0.007
	0.014
	0.010
	0.020

	9
	0.500
	-0.694
	0.005
	0.010
	-0.002
	-0.003

	10
	0.496
	-0.701
	-0.003
	-0.007
	-0.009
	-0.017

	11
	0.503
	-0.688
	0.006
	0.013
	0.010
	0.020

	12
	0.522
	-0.650
	0.019
	0.038
	0.013
	0.025

	13
	0.577
	-0.550
	0.055
	0.100
	0.035
	0.062

	14
	0.675
	-0.393
	0.098
	0.157
	0.044
	0.058


In plotting the original loss ratio data over time (see Figure 1), one can clearly see a growth pattern over the 15 year time span. Figure 2 shows fitting an ordinary least squares line to ln(LR) over time, which is equivalent to fitting an exponential growth trend model to the original Loss Ratio data. The fitted regression line shown in Figure 2 fits the data reasonably well for t = 0…8 but not as well for more recent years t = 9…14.  If insurance companies use this exponential growth trend model to estimate an annual model year update factor, the factor selected is based on the regression model coefficient for t (i.e., r = 0.0291 indicates a model year factor of 2.91%). Figure 3 is provided for convenience to show model results for the ordinary least squares regression of ln(LR) = a + b*t.

Since this exponential growth trend model clearly has some model estimation error (as indicated by the visual lack of fit for years t = 9…14 (more recent vehicle years), I will next begin exploring various ARIMA models to determine if an alternative model might be suitable for predicting future model year update factors.
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Figure 1: Loss Ratios Over Time
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Figure 2: Natural Logarithm of Loss Ratios Over Time and the Ordinary Least Squares Regression Line Fitted to the data

Dependent Variable: Log_LR 

	Number of Observations Read
	15

	Number of Observations Used
	15


	Analysis of Variance

	Source
	DF
	Sum of
Squares
	Mean
Square
	F Value
	Pr > F

	Model
	1
	0.23759
	0.23759
	74.41
	<.0001

	Error
	13
	0.04151
	0.00319
	 
	 

	Corrected Total
	14
	0.27911
	 
	 
	 


	Root MSE
	0.05651
	R-Square
	0.8513

	Dependent Mean
	-0.72639
	Adj R-Sq
	0.8398

	Coeff Var
	-7.77930
	 
	 


	Parameter Estimates

	Variable
	DF
	Parameter
Estimate
	Standard
Error
	t Value
	Pr > |t|

	Intercept
	1
	-0.95943
	0.03070
	-31.25
	<.0001

	T
	1
	0.02913
	0.00338
	8.63
	<.0001


Figure 3: Ordinary Least Squares Model Outputs for ln(LR) = a + b*t

ARIMA Models Exploration: Next, I will attempt to find a stationary time series related to either the original Loss Ratio time series, or the natural log transformed series (ln(LR)). From Figures 1 and 2, it is clear that both LR and ln(LR) are non-stationary, since they both have positive drift. I have already computed first and second differences of the original LR time series, and first and second differences of the log(LR) time series. By choice (and by practical experience), I will work with the ln(LR) series. 
Figure 4 shows the plot of first differences of LN(LR) vs. t. Visually, I can’t really say if this time series is stationary or not, so I will apply several hypothesis tests to check for stationarity. 


Figure 4: Plot of First Difference of LN(LR) vs. t

First, I compute the sample autocorrelation function (using PROC ARIMA) for 1st difference of log transformed data for up to lag-10. The associated correlation results show that the 1st differencing of log transform of the time series seems stationary since the sample autocorrelation function drops off quickly toward 0 as lag-k increases. The first few sample autocorrelations (k= 1.0, 0.43719, 0.12191, -0.08446 are shown in Figure 5.

The ARIMA Procedure

	Name of Variable = FirstDiff_LogLR

	Mean of Working Series
	0.042569

	Standard Deviation
	0.043885

	Number of Observations
	14


	Autocorrelations

	Lag
	Covariance
	Correlation
	-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
	Std Error

	0
	0.0019259
	1.00000
	|                    |********************|
	0

	1
	0.00084199
	0.43719
	|         .          |********* .         |
	0.267261

	2
	0.00023479
	0.12191
	|       .            |**          .       |
	0.314219

	3
	-0.0001704
	-.08846
	|       .          **|            .       |
	0.317580


Figure 5: Using PROC ARIMA to compute Sample Autocorrelations for 1st differences of LN(LR)

Next, using the sample autocorrelations, I can apply Bartlett's white-noise test in order to test the hypothesis that a particular autocorrelation = 0 (H0: true (k= 0 for some specified k). Based on the sample autocorrelations, I hypothesize that the sample autocorrelation for lag-3 = 0. I would reject H0 if |(3| > 2/sqrt(# datapoints) with 95% level of significance. Here the number of datapoints = 14, so we have the critical value of the test = 2/sqrt(14)=0.53. Thus, we fail to reject H0 that (2= 0, and (3= 0. (Note: while the same test would imply that we would fail to reject the hypothesis that (1= 0, I will ignore this result for now, since I conjecture that a good model for 1st differences of LN(LR) is either an AR(1) or a white noise process.

Third, I use Box & Pierce's Q-statistic to test H0: all autocorrelation coefficients = 0 for k = 1, 2, 3… Again, I have T = 14 datapoints, I choose K = 10 lags, and compute the Q-statistic as Q = T* sum(1..K of (rho-k)^2) = 14*(0.36477) = 5.11 with K=10 degrees of freedom. But Q-critical at 95% confidence with 10 degrees freedom = 18.31 (see chi-square table on p. 604 in text), so we fail to reject H0. 

At this point, the first differences of LN(LR) time series seems to be stationary, and either an AR(1) or a white noise process. So I conjecture that the original series LN(LR) is either an ARI(1,1,0) process or a random walk process. 

Additional Exploratory Work: ARIMA Models:

I tried five simple ARIMA models( AR(1), AR(2), MA(1), MA(2) and ARMA(1,1))  to fit the time series of 1st differences of log-transformed data. Following this section, I will consider the case that perhaps the LN(LR) is not one of these models, but a random walk (which implies that the 1st differences of LN(LR) is white noise, and not any of the five models considered).

I fit AR(1) and AR(2) model to the 1st difference of log-transformed data using unrestricted (ordinary) least squares) . The graphical plots using ARIMA in SAS Enterprise Guide (see Figures 6 & 7) shows that predicted time series of AR(1) and AR(2) respectively are reasonable fits for the 1st difference of log-transformed loss ratio data. Based on visual comparison, AR(1) seems to track the data better in an ex ante forecast comparison compared to AR(2), but both models represent overall behavior of series reasonably well. Thus if I had to choose between one of the models, I’d select AR(1) to keep the model as simple as possible for predicting 1st differences of log-transformed loss ratio data. As a result, I might recommend using an ARI(1,1) model to predict the log-transformed LR data (LN(LR)) – See Figure 6. 


Figure 6: ARI(1,1) model in blue and log(LR) data as dashed line over time. 


Figure 7: ARI(2,1) model in blue and log(LR) data as dashed line over time. 

Just to test my hypothesis that the 1st difference of LN(LR) data is not a moving average type model, I fit MA(1) and MA(2) model to the 1st difference of log-transformed data using a maximum likelihood (nonlinear least squares) approach. Since neither model converged, I can’t use these models. Thus I conclude that the 1st difference of log-transformed data is not a moving average type model, as I expected. 

Finally, I  fit an ARMA(1 ,1) model to the 1st difference of log-transformed data using unrestricted (ordinary) least squares). Goodness of fit criteria and visual inspection does not show significant model performance improvement over the AR(1) model. Thus I recommend using the AR(1) model rather than the ARMA(1,1) model for the 1st difference of log-transformed data. Equivalently, I recommend the forecast model for predicting LN(LR) year by year is an ARI(1,1,0).


Figure 8: ARIMA(1,1,1) model in blue and log(LR) data as dashed line over time. This model does not visually seem any better than an ARI(1,1) model. Thus I recommend using the simpler ARI(1,1) model for modeling log(LR) data.

Exploratory Work: Random Walk

Finally, I decided to explore the possibility that the LN(LR) data might not be an ARI(1,1) model, but instead a random walk with drift.

We are testing the hypothesis that LN(LR) is a random walk with drift, which means we are examining yt = LN(LR)t by using the single mean model form yt = a0 + a1*yt-1+et, with order of differencing d = 1 to obtain stationary time series. Since the F-statistic is computed based on assuming a number of lags to include, I will use lag-0 and include no lags. In this case, the F-statistic is 5.88. Based on the F-statistics given in the table below for the single mean, and lag-0, I would reject H0 at 95% confidence for lag-0, since the p-value = 0.0344. So I can conclude LN(LR) is not a random walk.

	Augmented Dickey-Fuller Unit Root Tests

	Type
	Lags
	Rho
	Pr < Rho
	Tau
	Pr < Tau
	F
	Pr > F

	Zero Mean
	0
	-0.7626
	0.5039
	-3.30
	0.0029
	 
	 

	 
	1
	-2.6073
	0.2491
	-0.23
	0.5825
	 
	 

	 
	2
	0.2093
	0.7091
	-0.16
	0.6063
	 
	 

	Single Mean
	0
	0.8036
	0.9747
	0.49
	0.9792
	5.88
	0.0344

	 
	1
	54.0127
	0.9999
	2.57
	0.9998
	3.59
	0.2224

	 
	2
	-10.9888
	0.0385
	1.94
	0.9992
	1.97
	0.5950

	Trend
	0
	-2.9286
	0.9183
	-0.61
	0.9601
	0.46
	0.9900

	 
	1
	24.0612
	0.9999
	-0.28
	0.9804
	4.20
	0.3984

	 
	2
	4.7726
	0.9991
	-1.25
	0.8486
	7.06
	0.0568


Final Model Recommendations:

Based on SAS outputs (not shown), the ARI(1,1) model is a reasonable predictor for yt=LN(LR)t time series data. The 1st differences of LN(LR) can be modeled as an AR(1) with the equation 
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Final Note: Using the ARI(1,1,0) Model to Predict Model Year Increases.

We now have a time series model that permits predicting 1st differences of LN(LR) using the specified AR(1) model and LN(LR) using the related ARI(1,1,0) model. We could use this model for the next few years to predict model year update factors in a straight-forward manner. Since the ARI(1,1,0) model can forecast future periods of LN(LR), we simply need this year’s loss ratio, and then can predict the next few years of LN(LR) forecasts. Using these forecasts, we might fit a regression model LN(LR) vs. t using data points {t, LN(LR)), (t+1, forecasted LN(LR) for t+1),… and estimate model year factor update from the regression coefficient on the t-term. The advantage is that we only need to obtain 1 year of current data to estimate the next few years loss ratios, so that we can predict a model year factor. The disadvantage is that it might be hard to explain this methodology to Department of Insurance regulators, since it is more complex than a simple exponential trend model. 

Concluding Remarks:

I’m still not convinced I get additional accuracy in predicting model year factors in this more complex manner vs. the simple exponential trend growth model. However, the exercise was useful in validating the conjecture that a good estimate of next year’s model year factor is closely related to this year’s model year factor. I also gained significant experience using time series models and SAS ETS package. In conclusion, I would recommend for my company to continue to use the simple exponential growth model, but to occasionally review and re-consider using an ARI(1,1,0) model as a 2nd model of model year factor update as a “cross-check.”

Appendix: SAS Code

/********************************************************************

Program: ModelYearARIMAAnalysis.sas

Date: June 22, 2009

Project: Auto Model Year Factors - Time Series Analysis

Author: Debra Elkins

Purpose: 

(a) student project for VEE Time Series 

(b) learn SAS ETS (Econometrics & Time Series) package

*********************************************************************/

/* pointer to data directory*/
LIBNAME MyDir "/work/ew06/users/delka/TimeSeries/";

/*Figure 1: data seems to have expo growth, indicating need for log-transform & 1st differences to achieve stationary related time series*/
PROC GPLOT DATA=MyDir.Step3; 

symbol i=spline v=circle h=1; 

plot LossRatio * t; 

   run;

/*Figure 2: fit loglinear regression model data. simple linear model estimates model year factor for this coverage to be 2.91% from the regression coefficient on the t term. Note model adj R^2 = 0.8513, a seemingly good fit. However, data is clearly a cubic form, so it is possible to improve model fit. Model output results shown in Figure 3*/
PROC REG;

MODEL Log_LR = t;

PLOT Log_LR * t;

RUN;

/*   Research Questions: would ARIMA yield a useful model?*/
/* plot of First Difference of log transformed data seems to yield a stationary process*/
PROC GPLOT DATA=MyDir.Step3; 

symbol i=spline v=circle h=1; 

plot FirstDiff_LogLR * t; 

RUN;

/*Compute sample autocorrelation function for 1st difference of log transformed data for up to lag-10*/
/*Figure 5: Correlation plot shows 1st differencing of log transform of the time series seems stationary since sample autocorrelation function drops off quickly toward 0 as lag-k increases*/
/* Also, using Bartlett's white-noise test if abs(rho-k) <= 2* 1/sqrt(#datapoints), then we determine that we have white noise (especially for lag-3 onward), and autocorr values within +/- 2 std dev of mean 0*/

/*Third, we can use Box & Pierce's Q-statistic to test H0: all autocorrelation coeffs = 0; T = 14, K = 10 lags, Q = T* sum(1..K of (rho-k)^2) = 5.4716 with 10 df. Q critical at 95% confidence, 10 df = 18.31, so we fail to reject H0*/
PROC ARIMA DATA=MyDir.Step3; 

IDENTIFY VAR=FirstDiff_LogLR nlag=10; 

RUN;

/*now start trying ARIMA models and examining goodness of fits*/
/*fit AR(1) model to FirstDiff of Log Transformed Data using unrestricted (ordinary) least squares) */
/* graphical plot using ARIMA in SAS EG with 1st difference calculated, shows predicted vs. actual pretty good!*/ 

PROC ARIMA DATA = MyDir.Step3;

IDENTIFY VAR=FirstDiff_LogLR; 

ESTIMATE p=1
METHOD = ULS

MAXITER = 50;

RUN;

/*fit AR(2) model to FirstDiff of Log Transformed Data using unrestricted (ordinary) least squares) */
PROC ARIMA DATA = MyDir.Step3;

IDENTIFY VAR=FirstDiff_LogLR; 

ESTIMATE p=2
METHOD = ULS

MAXITER = 50;

RUN;

/* based on visual comparison, AR(1) tracks the data better in an ex ante forecast comparison*/
/* both models represent overall behavior of series reasonably well*/
/*fit MA(1) model to FirstDiff of Log Transformed Data using Max Likelihood (nonlinear least squares) */
/* model does not converge - can't use*/
PROC ARIMA DATA = MyDir.Step3;

IDENTIFY VAR=FirstDiff_LogLR; 

ESTIMATE q=1
METHOD = ML

MAXITER = 150;

RUN;

/*fit MA(2) model to FirstDiff of Log Transformed Data using Max Likelihood (nonlinear least squares) */
/* model does not converge - can't use*/
PROC ARIMA DATA = MyDir.Step3;

IDENTIFY VAR=FirstDiff_LogLR; 

ESTIMATE q=2
METHOD = ML

MAXITER = 150;

RUN;

/*fit ARMA(1 ,1) model to FirstDiff of Log Transformed Data using unrestricted (ordinary) least squares) */
/* goodness of fit criteria and visual inspection does not show significant model performance*/
/* improvement over AR(1) model. Thus I recommend using the AR(1) model for forecasting FirstDiff of LogTransformed data*/
/* equivalently, the forecast model for predicting LossRatio increase year by year is an ARI(1,1,0)*/ 

PROC ARIMA DATA = MyDir.Step3;

IDENTIFY VAR=FirstDiff_LogLR; 

ESTIMATE p=1 q=1
METHOD = ML

MAXITER = 50;

RUN;

/* Augmented Dickey Fuller Unit Root Test to check if LN(LR) is a random walk */
PROC ARIMA DATA = MyDir.Step3;

IDENTIFY VAR = Log_LR

STATIONARITY = (ADF =(0,1,2));

RUN;






Time Series = LN(LR)





ARIMA Model = ARI(1,1) including a few forecasted periods 





Time Series = LN(LR)





ARIMA Model = ARI(2,1) including a few forecasted periods 
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