Walter Reedy
Time Series Student Project
Spring 2009 (7-17-2009)

Daily Temperature in Yellowstone National Park, WY

Objective

This project will attempt to create a model to forecast future high temperatures in Yellowstone National
Park, WY by fitting an ARIMA time series model to the historic data.

Data

The data for this project was obtained from the NEAS website for Yellowstone National Park, WY
(station 489905). | am using the dates 1/1/1993 to 12/31/2002 to fit an ARIMA time series. This 10 year
span was selected for its sufficient data points (3,652 days) and for its completeness (no days were
missing in the series.

The graph below shows the raw data. This graph shows that there is a strong seasonal pattern to the
data, which is consistent with our intuition that the high temperature in the summer months is likely to
be greater than the high temperature in winter months. We will need to de-seasonalize the data.

High Temperature in Yellowstone National Park, WY (1993-2002)
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Seasonality Adjustment

First we will calculate Mean Daily High Temperature, for example Mean Temperature for July 15 is the
average of all temperatures on that date between 1993-2002 ( 82.6°F = [71 +71 +76 +86 +81 +84 +82
+92 +84 +99] / [10days] ). Itis not particularly intuitive that the average temperature calculated from
the raw data for a single day (July 15) would be about 2 degrees higher than the days before and after it.
Looking a little closer at the data over the ten year period, we see that July 15™s Minimum High is much
higher than for July 13-14 and its Maximum High is much higher than for July 16-17. These 2 data points
(July 15™s Min and Max High Temperatures) distort the calculated Mean Daily High Temperature to
imply that July 15 is a significantly hotter day than preceding and following days. We would instead
expect that the temperature to slowly increase from January to the summer months and then decline
into the winter months. The volatiliy in the daily mean can be assumed to be due to the sparsity of

observations for that particular day, which is an average of just 10 days.

Mean High Difference Min High Max High
Date Temperature July 15 Temperature Temperature
July 13 79.1 -35 60 98
July 14 80.2 -2.4 63 99
July 15 82.6 0.0 71 99
July 16 81.1 -15 67 92
July 17 79.5 -3.1 65 91

To smooth the data, we will calculate the Smoothed Mean Daily High Temperature as equal to the 10
year average of the date and the five days before and after the date. For example, the Smoothed Mean
Daily High Temperature for July 15 is the average of the 110 data points between July 10-20 for 1993-
2002. Using this Smoothed Mean Daily High Temperature will reduce the distortion in our seasonality

adjustment.
Mean High Smoothed Mean High
Date Temperature Temperature
July 13 79.1 79.6
July 14 80.2 79.9
July 15 82.6 80.3
July 16 81.1 80.4
July 17 79.5 80.5
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The graphs below show the “Unsmoothed” Raw Mean Daily High Temperature and the Smoothed Mean
Daily High Temperature.

Unsmoothed Average Daily High Temperature (Jan 1 to Dec 31)
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Next | calculate the seasonality adjusted time series by taking the difference in the original time series
and the mean for each day. My average of these values over all the data points ( 0.0158 ) was slightly
different than zero since the smoothed mean is slightly different than the simple average of the points |
am taking a difference between. To correct for this, | normalize the series by subtracting each data
point by 0.0158, which now makes the mean of this series equal to zero. This time series will represent
how far the actual high temperature is from its expected value. It should be stationary with a mean of
zero, which we will examine by graphing the sample autocorrelations.

Sample Autocorrelation

The sample autocorrelations will provide us with an estimate of the autocorrelation function. This will
show us how dependant a value is on its surrounding data points. The equation we will use to calculate
the sample autocorrelations is shown below.
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The graph below shows the results for the first 50 lags (values of k).

Sample Autocorrelation
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The sample autocorrelations fall to zero as the lag gets larger. This indicates that the series is stationary.
Also, the first few lags have a value significantly greater than zero, which suggests that the true
autocorrelation coefficient is not zero and thus the series is not a white noise process. Since the sample
autocorrelation does not fall to zero until about the 7% lag, this suggests that the ARIMA model is of an
order less than 7. For this project, | will examine AR(1), AR(2), AR(3), and ARMA(1,1)
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Model Specification and Estimation

AR(1): Iran alinear regression to fit the parameters of an AR(1) model,
where X Variable 1 = the high temperature 1 days ago

Standard
Regression Statistics Coefficients Error t Stat
Multiple R 0.69 Intercept 0.00 0.11 0.01
R Square 0.48 X Variable 1 ¢1= 0.69 0.01 57.92
Adjusted R Square 0.48
Standard Error 6.74
Observations 3651
AR(2): I ran a linear regression to fit the parameters of an AR(2) model,
where X Variable 1 = the high temperature 2 days ago
X Variable 2 = the high temperature 1 days ago
Standard
Regression Statistics Coefficients Error t Stat
Multiple R 0.70 Intercept 0.00 0.11 -0.01
R Square 0.49 X Variable 1 ¢2 = -0.11 0.02 -6.94
Adjusted R Square 0.49 X Variable 2 ¢1 = 0.77 0.02 46.89
Standard Error 6.70
Observations 3650
AR(3): I ran a linear regression to fit the parameters of an AR(3) model,
where X Variable 1 = the high temperature 3 days ago
X Variable 2 = the high temperature 2 days ago
X Variable 3 = the high temperature 1 days ago
Standard
Regression Statistics Coefficients Error t Stat
Multiple R 0.70 Intercept 0.00 0.11 0.02
R Square 0.49 X Variable 1 ¢3 = 0.03 0.02 1.66
Adjusted R Square 0.49 X Variable 2 ¢2 = -0.14 0.02 -6.53
Standard Error 6.70 X Variable 3 ¢1= 0.77 0.02 46.80

Observations 3649

ARMA(1,1): | used Yule Walker equations to fit the parameters of an ARMA(1,1) model,
where Sample p1= 0.6920 = ¢1-61
Sample p2 = 0.4195 = ¢1 * ($p1-61)
Solve: ¢1 = 0.6062
01 = -0.0859
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Regression Analysis on AR(1), AR(2), and AR(3)

The t statistics are high for each model, indicating that there is a relationship between high
temperatures on consecutive days. The R*2 improves only slightly from AR(1) to AR(2) and AR(3), while
the standard error decreases only slightly. This implies that adding the 2™ and 3™ days to the regression
improves the result, but the improvement may not be material enough to select the AR(2) or AR(3)

model over the AR(1) model given the principle of parsimony.

Durbin-Watson Test

| will test the Null hypothesis that there is no serial correlation in the residuals of our selected model.
Since all four Durbin-Watson statistics are close to 2.0000, | will not reject the Null Hypothesis that there
is no serial correlation. It is noteworthy that the AR(2) model has a DW statistic that is much closer to
2.0000 than the other models.

Durbin Watson
Model Statistic
AR(1) 1.8413
AR(2) 1.9926
AR(3) 1.8411
ARMA(1,1) 1.8382

Box-Pierce Q Statistic

| will test the joint hypothesis that all of the autocorrelation coefficients are zero. This would indicate
that the residuals of our selected model are the result of a white noise process. The results below are
calculated using 200 lags (k=200) and varied the degrees of freedom as necessary.

The Box-Pierce Q statistic is significantly lower for AR(2) compared to AR(1) or ARMA(1,1). Further, the
AR(1) model fails the test at the 10% critical level, although it would pass at the 5% critical level. Based
on these results, | tend to favor the AR(2) over the AR(1) or ARMA(1,1).

AR(3) has a lower Q stat relative to the critical level than AR(2), but the improvement may not be
material. Based on these results, | tend to favor the AR(2) over the AR(3) based on the principle of

parsimony.
Box-Pierce Critical Critical
Model Q stat (k=200) | 10% Level Result 5% Level Result
AR(1) 231.83 224.96 Reject 232.91 Accept
AR(2) 177.07 223.89 Accept 231.83 Accept
AR(3) 168.43 222.83 Accept 230.75 Accept
ARMA(1,1) 207.56 223.89  Accept 231.83  Accept
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Conclussion

| conclude that am AR(2) time series is the most appropriate model for the High Temperature in
Yellowstone National Park. My conclusion is supported by the following summary of results which were
discussed in more detail above:

e Regression analysis shows an improvement in R*2 and Standard error for AR(2)
e Durbin-Watson statistic is very close to 2.0000 for AR(2)
e Box-Pierce Q statistic is significantly lower for AR(2)

Therefore, the equation for the model of how far the actual high temperature is from its expected value
in Yellowstone National Park is:

(Ye- M) =077 (Yeq - M) - 0.11 (Ve - i)

Where: Y: = High Temperature
K = Smoothed Mean Daily High Temperature

(Y:- u) =Difference from the Smoothed Mean

Finally, we can also add back in the Average High temperature (which will vary by day) to get a forecast
of the actual High Temperature for Yellowstone National Park. This will be equal to the long-term
Expected Temperature + an adjustment based on the temperature of the last 2 days (which will be 0°F
on average).

Yi = M+ 0.77 (Yeq - Hea) - 0.11 (Ve - M)
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