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7/20/2009
A Time Series Analysis of the Case-Shiller Home Price Index
Introduction

In a recent interview, Dr. Robert Shiller explained his view of inefficiency in housing market price changes:
"One thing is true about housing, it is a very inefficient market - and it shows momentum. And in fact, when the rate of decline slows that is evidence that the rate of decline will continue to slow because there has been a second derivative effect that is actually in the data historically."
Robert Shiller, July 13, 20091
I seek to verify this assertion by fitting a time series model to Case-Shiller home price data. 
Data and Assumptions

I obtained S&P/Case-Shiller Home Price Index data from the Standard and Poor’s website. 2   I attempt to fit a time series model to the 10 City Index from Jan. 1987- Apr.2008 and test the fit ex-post on May. 2008 to Apr. 2009 data.

An inspection of the Case-Shiller housing indices reveals strong seasonal patterns in the second derivative.   This is interesting, but I assume by the statement that it is meant that it is the rate of decline slowing itself that leads to further slowing in the rate of decline (momentum), rather than the fact that the latest data are in a seasonally positive period for the second derivative.   I assume that the momentum effect to which Mr. Shiller refers is exclusive of the seasonal pattern. 
Initial Data Analysis and Transformation
I experimented with differencing and de-seasonalizing to arrive at a stationary series.   The natural logarithm series was applied to the initial series and used in all testing.   The R programming language and Excel are used for the analysis.  All R code is documented with explanatory notes in the tab ‘code,’ and follows the order of the write-up.
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The initial series; logged series; the once differenced, logged series; and the de-seasonalized, once and twice differenced, logged series were tested.  
A loess model in R was used to determine a seasonal index.   In this procedure: 

“At each point in the data set a low-degree polynomial is fitted to a subset of the data, with explanatory variable values near the point whose response is being estimated. The polynomial is fitted using weighted least squares, giving more weight to points near the point whose response is being estimated and less weight to points further away. The value of the regression function for the point is then obtained by evaluating the local polynomial using the explanatory variable values for that data point.” 3
The result is additive monthly factors, in this case (for the twice differenced, logged series):
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None of these series, except the twice differenced, de-seasonalized series appear to be stationary based on visual inspection, and interpreting their sample autocorrelation functions.  In all other cases, the sample autocorrelation approached zero very slowly, or not at all:
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Often economic time series are first-order homogeneous. That is they are stationary after taking the first difference of the series, which implies roughly that the process varies around the mean of rate of change.  We must be careful to examine the series for eras.  If there are distinct intervals in the series in which the mean, or variance of changes, the series should be broken into pieces with such eras modeled separately.
In the case of the house price data series, I did not see evidence of eras of different means or variances in the rate of change in house prices.  The series does not appear to deviate around a mean overall or within periods.
I tested the hypothesis that the once and twice differenced series have a unit root with the Augmented Dickey Fuller test. 4 If a series has a unit root, it is not stationary, is consistent with a random walk hypothesis, and should therefore be differenced a second time to attempt to achieve a stationary series.  The results are as follows:
        Augmented Dickey-Fuller Test

data:  dlcs (differenced, logged series) 

Dickey-Fuller = -1.1265, Lag order = 6, p-value = 0.9167

alternative hypothesis: stationary
data:  ddlcs  (twice differenced, logged series)

Dickey-Fuller = -9.5133, Lag order = 6, p-value = <0.01

alternative hypothesis: stationary
The lag order suggested by the default formula was used:  k = trunc((length(x)-1)^(1/3))) , where x is the length of the data series.

For the once-differenced series, we fail to reject the null hypothesis at the 5% significance level.  For the twice-differenced series, we reject the null hypothesis.  Similar results were found for the de-seasonalized series.  Therefore there is evidence that the once-differenced series is a random walk, and that differencing a second time produces a stationary time series.   
The de-seasonalized, twice-differenced, logged transformation of the Case-Shiller series (dsddlcs) was the first to yield a homogeneous stationary series, and was selected for further study.  
For the selected series, the sample autocorrelations drop to near zero immediately for this series, and stays near zero.  This appears close to a white noise process at first inspection, so tests for white noise were performed at this stage, to see if further modeling is warranted.
Using the result due to Bartlett, with 254 data points, if a particular lag has autocorrelation coefficient greater that 2/sqrt(254)=0.125, we can reject the null hypothesis of a white noise process at the 5% significance level.   There are seven lags with absolute value greater than 0.125 in the first one hundred.  This appears to be only mildly unexpected under the null hypothesis, given that there is a 1/20 chance of a significant value at the 5% significance level even if the null hypothesis is true.  There is not strong evidence of non-zero autocorrelation coefficients based on this analysis.
Next the joint hypothesis that all autocorrelation coefficients are zero was directly tested using the Box-Ljung test.  This test derives the statistic:
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where n is the sample size, r(j) is the autocorrelation at lag j, and h is the number of lags being tested.  The hypothesis of randomness is rejected if

QLB > [image: image5.png]o




for significance level [image: image6.png]


, where [image: image7.png]


is the percent point function of the chi-square distribution. 5
In this case, the test was run for several numbers of lags, h.  The results were generally lower than the result for 100 lags which produced: 

QLB = 126.7609, df = 100, p-value = 0.03657
The p-value indicates the probability of observing values as extreme as those seen, given that all autocorrelation coefficients are zero, i.e. that the process is white noise.  We can reject the null hypothesis of white noise at the 5% significance level, based on this result.  Testing the null hypothesis that all lags are zero using the Box-Ljung test yielded significant evidence that the process is not white noise.
Model Specification and Parameter Estimation
Using the maximum likelihood procedure in R, various ARIMA models were fit to the data.  Since the series has already been found to be stationary through twice differencing, the process will now be identical to fitting an ARMA(p,q) model.   The model applied to the series before differencing could be described as ARIMA(p,2,q).
Before calculating a set of ARMA models, the graphs of the sample autocorrelation function and the partial autocorrelation function are examined to give information for the specification of the model:
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Lags 0-100 shown
The autocorrelation function shows how much correlation exists between data points in the series at successively larger distances.  Here, the sample autocorrelation function demonstrates a cyclical effect which would indicate a potential autoregressive term in a time series model that could generate the data.  There are small spikes which could indicate a potential moving average term. 
The partial autocorrelation function for each lag, p, shows the value of the p-th autoregressive parameter, given that the process is modeled as p-order autoregressive.  The sample partial autocorrelation function at lags 3 and 4 has a value outside the significance threshold of +-0.125, which could indicate a 4th order autoregressive process since the 4th parameter is significantly different from zero. 
For model selection, the Akaike Information Criterion is used, measuring the fit of ARMA(p,q) models for all p and for all q in (0,8).  The AIC measures goodness of fit, and penalizes based the number of parameters, hence trading off between fit and parsimony.   Smaller AIC values are desired.  We have:
AIC = 2k -2ln(L) 
where k is the number of parameters in the statistical model, and L is the maximized value of the likelihood function for the estimated model. 6 
The results are summarized as follows:
[image: image9.emf]AIC results for ARMA(p,q) models

p,q 0 1 2 3 4 5 6 7 8

0 -2446.7 -2446.9 -2446.2 -2449.0 -2450.3 -2448.6 -2448.6 -2449.6 -2448.7

1 -2447.1 -2445.1 -2445.1 -2450.3 -2448.8 -2446.9 -2447.5 -2448.3 -2446.7

2 -2445.2 -2444.0 -2445.2 -2451.1 -2455.1 -2455.1 -2450.9 -2449.4 -2446.9

3 -2449.9 -2451.9 -2451.1 -2455.7 -2447.2 -2451.1 -2448.9 -2449.0 -2444.9

4 -2452.6 -2450.8 -2449.5 -2447.6 -2458.4 -2457.0 -2461.1 -2459.9 -2455.9

5 -2450.7 -2448.8 -2447.5 -2446.2 -2447.8 -2460.1 -2460.9 -2459.1 -2457.4

6 -2449.6 -2448.5 -2456.8 -2452.9 -2461.0 -2461.2 -2459.2 -2454.1 -2451.8

7 -2450.0 -2448.1 -2452.9 -2451.2 -2449.0 -2459.4 -2454.3 -2452.3 -2440.8

8 -2448.1 -2447.0 -2451.0 -2449.2 -2447.3 -2451.4 -2451.4 -2452.8 -2450.1


Based on the results of the AIC comparison, the following model with the minimum AIC is selected:
ARMA(6,5)

with coefficients:

       ar1          ar2         ar3         ar4           ar5        ar6          ma1         ma2

      0.2752  -0.1947  -0.2114  -0.5482  0.6798  -0.1237  -0.1636  0.2188

       ma3      ma4       ma5          intercept

      0.0879  0.5812  -0.7277     -1e-04
Since this model is quite high order, it seems likely that it is not necessary to have this many parameters to best capture the characteristics of the series, while maintaining parsimony.  It may be suspected that the penalty for additional parameters in the AIC test is not strong enough in this case.  
Nevertheless, there is no outstanding model of lower order- there are gradual decreases in the AIC until selected model hits a minimum, at which point the benefit of additional parameters do not outweigh the penalty of the AIC in the models tested.  Also, residuals for low order models (with 0 to 2 AR and MA parameters) were found to be different from white noise with a Box-Ljung test.  Therefore, the ARMA(6,5) model was chosen to be tested diagnostically and for predictive value.
Diagnostic Checks
The sum of the coefficients is -0.123, so the necessary condition of stationarity that the sum of the AR parameters are smaller than 1 in magnitude is not violated by the selected model.

The time series diagnostic check in R was run on the selected model, plotting the standardized residuals, the ACF of the residuals, and the p-values for the Box-Ljung test:
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The standardized residuals show no apparent pattern except a possible increase in magnitude in the most recent part of the series.

The sample ACF of the residuals immediately drops to near zero, and shows no clear pattern thereafter.
A two-sided Durbin-Watson test for serial autocorrelation was run on the residuals.  A DW statistic of 1.957 is obtained, very close to 2, which is desired.  This results in a p-value of 0.78, so we fail to reject the null hypothesis that there is no serial correlation:
        Durbin-Watson test

DW = 1.9573, p-value = 0.7806

alternative hypothesis: true autocorelation is not 0

The Box-Ljung test was run for each of the first 100 lags, h.  The lowest result was for 20 lags which produced: 

QLB = 18.6134, df = 20, p-value = 0.5471

Even at the lowest p-value, we cannot reject the null hypothesis of white noise at the 5% significance level.  This fits with the expectation that the residuals of the selected model will resemble white noise, and supports the conclusion that the model is at least not under-parameterized.
Forecast

Given the large number of parameters in the selected model, there is a suspicion that the parameters are simply fitting the sample data more closely, but that they do not represent any improvement in predictive value over a simpler model.  This potential over-fitting of the model was partially addressed by the AIC test which penalizes the addition of parameters.  A further test is to examine the performance of the model in predicting data points not used to build the model.
An ex-post forecast is conducted using the selected model to predict twelve 1-month-ahead forecasts of data for May 2008 to April 2009.  That is, the model parameters will be held fixed, and additional month of data will be incorporated successively only to be used to calculate a 1-month-forward forecast.  The model is not re-parameterized based on the new data.  
The results were re-seasonalized and integrated to show the monthly percent change in house prices:
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Additionally a 12-month-ahead forecast on the same basis was made based on only the data used to build the model:
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The model very effectively anticipates month-to-month percentages changes.  Rather than having a lagged response to changes, them model anticipates and predicts these changes quite well in most cases.  
Both tests were rerun using the ARMA(0,0) model result (only an  intercept term, the test results are same for both ):
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For the 1 period ahead forecast, the mean squared error for the 12 months was 0.52.  For the 12 period forecast, the MSE was 8.18.  The model with using a seasonal pattern and an intercept only for the second difference slightly outperformed the 1 period ahead forecast with an MSE of 0.48.   The 12 month-ahead model was slightly worse at an MSE of 8.90.  Based on these results and the lack of parsimony in the selected model, that random variation is more significant than the fit of the ARMA(6,5), and that this model over-fits the sample data.  Based on judgment and this evidence, I would select the ARIMA(0,2,0) model with seasonal adjustment for further forecasting.
Conclusion
In the data sample examined, once seasonality is removed, there is still some evidence of momentum in the second derivative.  There was evidence that the series is not white noise, and an ARMA(6,5) model was shown to be a significantly better fit than an intercept only model, even penalizing for additional parameters.  However, the predictive value of the ARMA(6,5) model was not shown to be better than the one parameter model.   
After adjusting for the seasonal pattern, when the rate of decline slows, the future change in the rate of decline appears to be not far different from a white noise process.  The only strong second derivative effect is the seasonal pattern, which was modeled successfully.
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