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California Highway Miles Driven


I chose to model the number of miles driven on California Highways by month using time-series techniques. I downloaded data from the Traffic Data Branch of the California Dept. of Transportation. The data is vehicle miles driven by month in billions (with a “B”) going back to January 1972. From the website: “A sample of up to 22 traffic monitoring sites comprising various roadway types are used to calculate VMT”, since it would not be practical to actually count every single mile by every car that is in or comes through California.


Here is what the data looks like:

[image: image1.emf]Monthly Vehicle Miles Driven in CA, 1972 - Present (Billions)
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Just by looking we can see two hurdles: non-stationarity and seasonality. We would be able to figure this out without even looking at the data. There will be an obvious upward trend as the population grows, or as the economic output of the state increases. Seasonality could have multiple causes. Peoples’ lives are seasonal. We take vacations in the summer, and we take time off during the holidays. Also, trucking in California must increase when fruit and vegetables mature, which is not uniform year-round.


To deal with this I used the crude method (also used by the authors in the textbook) of simply taking the 12 month lagged difference. This will take care of the seasonality, since the cycle is annual, and it will take care of the trend because it appears to be linear, although in reality it is probably exponential. Here is the new series:

[image: image2.emf]Series after 12-mo. lagged differencing
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Now this series does not have any obvious trend or seasonality, although we should do a statistical test to make sure there is not some more seasonality hidden in this highly volatile series. I looked at the autocorrelation function. This can help us determine if a series is stationary. If there were still a seasonal cycle in the series, we would see a repeating pattern of large values in the autocorrelation function. Here is what the autocorrelations look like:

[image: image3.emf]Autocorrelation Function
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There is no repeating pattern and we see a gradual decay as the lag increases. Note that a Box-Pierce test would indicate (with significance) that the autocorrelations are non-zero, at least for the first few. This does not violate the stationarity assumption. It would violate a white-noise assumption, but that is not what we will assert.


The next step in building our model is specification. We have already determined that we will use first-differences (with a 12 month lag), but we need to determine the auto-regressive and moving average order of the model. I don’t think an adequate model will require very many parameters. We are already accounting for seasonality, and I doubt there is much more information to be gleaned from someone’s driving habits 2, 3, or 4 months prior than in the previous month. Therefore I will only test the models with p + q <= 2: AR(1), AR(2), MA(1), MA(2) and ARIMA(1,1).


The graph above of the 12 month lagged differences looks a bit like a random walk. The series jumps around, but each point seems to be indicative of the mean of the next few points. A random walk is auto-regressive, so I suspect the best model will have an auto-regressive component.


I set up all the models in MS Excel, and to estimate the parameters I used explicit formulas for AR(1), and I used the “Solver” functionality along with “guess and check” for the others. The solver takes too long and I don’t think it’s that accurate, but since I am doing just a few simple models it will suffice. To judge goodness of fit I looked at the sum of the squared error. The first model I looked at was MA(1). Here is the result:

[image: image4.emf]Actual Series vs MA(1) Model
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This obviously isn’t a very good fit and the SSE was 31. I ruled out this model and MA(2). Next I looked at AR(1). Here is the graph:

[image: image5.emf]Actual Series vs Model AR(1)
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This is a very good fit. It seems that we have captured the behavior of the series by using an auto-regressive component. The SSE for this model is around 11.8. Below are the results for AR(2) and ARIMA(1,1):

[image: image6.emf]Actual Series vs AR(2) Model
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[image: image7.emf]Actual Series vs ARIMA(1,1) Model
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Based on the sum of the squared error, AR(2) is actually the best model with an SSE of less than 11, but visually you can tell that the extra parameters are not adding much value to the model. I decided to go with AR(1) as my model.


I ran two diagnostic checks to verify that AR(1) was a valid model. First I looked at the autocorrelation function of the residuals. If the model is correct, these should follow a white-noise process. Below is a graph of the autocorrelation function of the residuals:

[image: image8.emf]Autocorrelation of AR(1) Residuals
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A white noise process should have autocorrelations of zero for all nonzero lags. We see in the graph that this is almost true with the exception of the lag 12 autocorrelation. This may indicate that we have not completely taken care of the seasonality, but the value is still reasonably small.


The other check I performed is closely related. I computed the Box-Pierce statistic to test the hypothesis that all the residual autocorrelations are zero. I used the values for displacements 2 through 10, to avoid the obvious outlier at 12. The test rejects the null hypothesis (that this is a white noise process) at 2.5% but not at 1% significance. This isn’t that great, but also not that bad. We probably could not do any better with so simple a model.


The last thing to do is to test out a forecast. To build the model I used data through December 2008, but data is available through May 2009. We can perform an Ex-post forecast on the months in 2009 to see how well the model does. Here is the result:

[image: image9.emf]Ex-Post Forecast for 2009
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For so simple a model, the forecast is pretty good. It is certainly better than a straight average or just taking last month’s number. I think this model would suffice for short term forecasts, or if one only needs a ballpark number rather than an exact figure.

