Introduction:
As a proponent of Mass Transit, I decided to model Amtrak ridership data using time series analysis.  I was interested see what trends arose from the data, and since we keep hearing that Amtrak is in trouble and losing money, I thought it might be instructive to figure a way to model the number of riders in order to help the company predict revenue.   The purpose of this project is to apply time series techniques to find the best model to predict future ridership.
Data:

The data is collected, monthly from January, 1991 to the November 2008 by the Bureau to Transportation Statistics, is found here: http://www.bts.gov/publications/key_transportation_indicators/november_2008/html/rail_amtrak_ridership.html
I checked to ensure that no months were missing.  There were 215 data points, enough data, I believe, for meaningful results.

Here is a graph of the data (see tab “Not Seasonally Adjusted Data” in attached workbook): 
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On first glance, we can tell that the data is probably seasonal because of the peaks and valleys we see at regular intervals, highest in the summer and December.  This is not surprising, as people often travel in the summer and around the holidays.  Additionally, the data does not appear to be stationary, increasing slowly since 1997.  (The peak in July 2008 corresponds to a peak in gas prices).
Below is a picture of the autocorrelations of the series (see tab “Not Seasonally Adjusted Data” in attached workbook): 
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The peaks and valleys here again indicate seasonality.  In order to adjust for this, I used the method described on ppgs 482-484 of the textbook (see tab “Seasonally Adjust Data” on the attached spreadsheet.).

The chart below shows a comparison between the seasonally adjusted and non-seasonally adjusted data: 
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We can see from the chart above that the blue line appears much smoother, and therefore we may assume that seasonal deviations will not distort our proposed AR or MA models.  Just to be sure, I have graphed the autocorrelations of the seasonally adjusted model (see tab “Seasonally Adjusted Correll” in attached workbook):
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The above corellogram no longer contains seasonal distortions, but the pattern of the correlations does not indicate a stationary series, as the decrease from the first lags is gradual, not geometric as a stationary series would be.  Additionally, the U-shaped pattern does not indicate a stationary series.  I have therefore chosen to use first differences for my AR and MA models in order to create a stationary series.    The corellogram of the seasonally adjusted first differences is below (see tab “First Differences” in attached workbook):
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Similar to the hog price example in the text book (pg 506) the autocorrelations for this series drop off quickly after the first lag, and then remain smaller, indicating a more stationary series.   Since the drop off is so quick after lat 1, I would guess an AR or MA model with only a few parameters (i.e. AR(1), AR(2), MA(1)) would be the best fit.  
Using Bartlett’s test at the 5% significance level, (1/sqrt(203)=.07), we see that the first auto correlation is more than 2 standard deviations away from 0.  Thus we can be 95% sure that the true coefficient on that autocorrelation is not 0.  It looks like the correlation on  some of the later lags is high (including lag 12) are also quite high, and it may be worth running the models below using 2nd differences to ensure that the stationary conditions are met, but we will not do that for the purposes here.  Another thought could be to divide the series into separate series, or get a longer interval of data.
Note that for the following regressions, I removed the final 12 months of data in order to be able to test my ex-post projections at the end of the project.  
AR(1) Model

I ran an AR(1) model (see tab AR1 Regression in the attached worksheet) on the data below.  The results are as follow: 
	Regression Statistics

	Multiple R
	0.286659326

	R Square
	0.082173569

	Adjusted R Square
	0.077239019

	Standard Error
	60.45782584

	Observations
	188


	 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept
	3.022393184
	4.410869053
	0.685214897
	0.49406138

	First Lag
	-0.284062538
	0.06961001
	-4.080771412
	6.65523E-05


The coefficient on the first lag (-.284) is reasonably close to the first autocorrelation that we saw in the data (-.292) , indicating that our model may be a good fit, however the adjusted R2 is low.  Note that the T-stat on the first lag is high, confirming Bartlett’s test. Below is a graph of the expected v. actual results.  
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The predicted results do not seem to be a very good fit, missing a lot of the peaks and valleys of the actual series, however the mean of the AR(1) series (μ = δ / (1 – φ1), where  δ is the coefficient of the intercept and φ1 is the coefficient on the first lag) is 2.35, close to the mean of our differenced series of 2.55.
I performed A DW test to determine if there was serial correlation.  The null hypothesis is that there is no serial correlation.  The statistic for the AR(1) is 2.13.  Since 2.13 is between 2 and 4-1.63=2.37 where 1.63 is the du on the 5% significance table, we can conclude that we cannot reject the null hypothesis.
I additionally ran a Box Pierce to test the null hypothesis that the autocorrelation coefficients are 0.  At 20 lags, the statistic is about 28 and the critical value is about 30 at the 5% level, but 27 at the 10% level.  Therefore the test is significant at the 10%, but not the 5% level.  Therefore, we may want to reject this model as at the 10% level we cannot be sure that the residuals are white noise. 
AR(2) model (see tab AR(2) regression the attached worksheet):

To see if I could do any better, I decided to run an AR(2) model on the data.  The results are below:
	Regression Statistics

	Multiple R
	0.35197507

	R Square
	0.12388645

	Adjusted R Square
	0.114414952

	Standard Error
	59.22745232

	Observations
	188

	 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept
	3.500048796
	4.324099941
	0.809428284
	0.419308666

	First Lag
	-0.34610809
	0.071325983
	-4.852482559
	2.58136E-06

	Second Lag
	-0.211483444
	0.071258326
	-2.967841868
	0.003395591


The adjusted R2 is much better on this regression, though .114 is still extremely low, not indicating a good fit, however the mean of the series (μ = δ / (1 – φ​1 – φ2) , where  δ is the coefficient of the intercept and φ1 is the coefficient on the first lag and φ1 is the coefficient on the second lag) is 2.24, still close to the mean of our series.  Using the Yule Walker equations, I calculated the coefficient Θ1  to be -.356 and the coefficient Θ2 to be -.220, close to the coefficients calculated above.  
When graphed, the results appear as the following:
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This regression seems to be better than the AR(1) at predicting the peaks and valleys.  I ran a DW statistic test, similar to before.  This time, the DW statistic was 2.04, again telling us that we cannot reject the hypothesis that there is no serial correlation.

The Box Pierce Q Statistic here is 18.7, while the test statistic is approx. 29 at the 5% level.  This indicates that the residuals may be a white noise process and we cannot reject the null hypothesis that all autocorrelation coefficients are 0.

Note that I also ran an AR(3) model (see tab AR(3) regression in attached spreadsheet), but as the adjusted R2 did not significantly increase and the coefficient on the 3rd lag was not significant, I did not run any additional diagnostic tests.

At this point, I decided to try a MA(1) model in order to possibly get a better fit.

MA(1) Model (See Tab MA(1) Regression on attached worksheet).

The MA(1) model follows the following formula: yt = μ + εt - Θ1εt-1.  We can estimate μ as the mean of the series, 2.55.  We will have to back in Θ1 using the following formula: ρ1 =-Θ1 / (1 + Θ12).  

Using this equation, we get that Θ1=.32194 and our equation is therefore yt = 2.55 + εt -.32194 εt-1.

A graph of the actual v. expected results looks like this: 
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This model again does not appear to fit the data as well as the AR(2) did, but does reflect the peaks and valleys better than the AR(1).

The Box Pierce Q Statistic here is 21.58, while the test statistic is approx. 30 at the 5% level.  This indicates that the residuals may be a white noise process and we cannot reject the null hypothesis that all autocorrelation coefficients are 0.

Ex Post Projection
At this point, none of the models tested seem to be extremely promising.  However, it may be possible to choose the best model looking at ex post forecasts.  We will test our 3 models:

AR(1): Yt = 3.02-0.2840*Yt-1 + 
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AR(2): Yt = 3.50-0.346*Yt-0.2115*Yt-2  +
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MA(1): Yt = 2.55 + εt -.32194 εt-1.
The projections are below (see tab projection in attached worksheet):

	Timing
	Actual
	AR(1)
	AR(2)
	MA(1)

	Apr-07
	30.004
	Prediction
	Residual
	Residual Squared
	Prediction
	Residual
	Residual Squared
	Prediction
	Residual
	Residual Squared

	May-07
	43.748
	 
	
	 
	 
	
	 
	 
	
	 

	Jun-07
	24.956
	-9.405
	-34.361
	1180.678
	-17.987
	-42.943
	1844.101
	-15.389
	-40.345
	1627.719

	Jul-07
	5.917
	-4.067
	-9.984
	99.68
	-14.389
	-20.306
	412.334
	-10.44
	-16.357
	267.551

	Aug-07
	-8.358
	1.342
	9.7
	94.09
	-3.826
	4.532
	20.539
	-2.718
	5.64
	31.81

	Sep-07
	41.784
	5.397
	-36.387
	1324.014
	5.141
	-36.643
	1342.709
	4.364
	-37.42
	1400.256

	Oct-07
	61.447
	-8.847
	-70.294
	4941.246
	-9.194
	-70.641
	4990.151
	-9.498
	-70.945
	5033.193

	Nov-07
	87.149
	-14.432
	-101.581
	10318.7
	-26.604
	-113.753
	12939.745
	-20.292
	-107.441
	11543.568

	Dec-07
	-129.858
	-21.733
	108.125
	11691.016
	-39.658
	90.2
	8136.04
	-32.041
	97.817
	9568.165

	Jan-08
	12.056
	39.91
	27.854
	775.845
	30.014
	17.958
	322.49
	34.04
	21.984
	483.296

	Feb-08
	65.859
	-0.402
	-66.261
	4390.52
	26.79
	-39.069
	1526.387
	9.626
	-56.233
	3162.15

	Mar-08
	8.431
	-15.686
	-24.117
	581.63
	-21.844
	-30.275
	916.576
	-15.555
	-23.986
	575.328

	Apr-08
	-103.001
	0.627
	103.628
	10738.762
	-13.346
	89.655
	8038.019
	-5.173
	97.828
	9570.318

	May-08
	202.862
	32.281
	-170.581
	29097.878
	37.367
	-165.495
	27388.595
	34.043
	-168.819
	28499.855

	Sum
	 
	 
	 
	75234.059
	 
	 
	67877.686
	 
	 
	71763.209


Since the AR(2) model has the minimum sum of the squared residuals, that appears to be the best fit.  
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Conclusion:

While none of the models tested seems to be a particularly good fit, I think that the best of the lot is the AR(2), as it had a higher R2 and additionally, it had better predictive ability than the MA(1).  This exercise has shown, however, that the prior month’s ridership does not have a lot of predictive power for the current month’s ridership.  Further projects on this may include trying other models, or running the AR and MA models using 2nd differences as opposed to first differences.  Additionally, it would be interesting to try to take out the effects of gas prices or other external factors on the Amtrak ridership.
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