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Time Series VEE Project


Time Series to predict the future Birth Rate in the United States

I examined birth rates in the United States to see if past birth rates were able to predict future birth rates.  This is an important statistic to monitor to predict the population of this country.  It also is a good measure of the economic conditions in this country.  The more stable the economy is, the more births we’d expect to see.  The birth rate data was obtained from the Population Reference Bureau website (www.pbs.com).  The birth rate is defined as the number of live childbirths per 1,000 women aged 15-44. Since family lifestyles and economic conditions have changed over the last 90 years, I broke the data down into subsets based on history – Pre Baby Boom, Baby Boom, and Post Baby Boom – and modeled different time series using various time series models.  Once the models had been specified, I used the estimated parameters to forecast data and compared this to actual data to determine goodness of fit.

Model Specification

The first step in determining the model to use was to check that the series was stationary.  This was done by using the autocorrelation function for all years.  See the ‘Correlogram all yrs’ tab for this calculation.  Below is the graph of the autocorrelation function. 
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To check for stationarity, we’d expect to see a rather quick drop off to 0, which is the case here.  However, after the initial drop off, the sample autocorrelation is increasing again and dropping off later, indicating this is a non stationary series.  Next I looked at the first differences to see if taking the first differences would lead to stationarity.  Below is that graph. 
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Once again there is great fluctuation in this graph.  These two graphs suggest the data should be broken down into at least 2 separate series.  Based on history and the baby boom that occurred after World War II, it seemed natural to break this era out and look at the birth rate pre baby boom, baby boom, and post baby boom.  I defined the pre baby boom era as1909 to 1945, the baby boom era as 1946 to 1971, and the post baby boom era as 1972 to 2000.  These time periods were chosen based on a mix of historic definitions and user judgment.  There is no pre defined Baby Boom era other than it started post World War II and ended in the late 1960’s or early 1970’s. 
Pre Baby Boom (1909 to 1945)

The correlogram of this time frame still did not show the stationarity that we are looking for.  This graph can be found on the ‘Correlogram 1909-1945’.  The following graph shows the first differences.
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This graph shows the rapid decline to 0 and then a fairly smooth pattern after that.  This indicates the series may be a homogeneous non-stationary series of order 1.  
Baby Boom (1945-1971)

The correlogram of this time frame still did not show the stationarity that we are looking for.  This graph can be found on the ‘Correlogram 1946-1971’.  The following graph shows the first differences.
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This graph shows the rapid decline to 0 and then a fairly smooth pattern after indicating this series may be a homogeneous non-stationary series of order 1.
Post Baby Boom (1972-2000)

The correlogram of this time frame still did not show the stationarity that we are looking for.  This graph can be found on the ‘Correlogram 1972-2000’.  The following graph shows the first differences.
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Unlike the other time periods, the first difference graph for this time frame showed the rapid decline to 0 however was still showing the same amount of fluctuation that was shown in the data prior to taking first differences.  Based on this we you reject the hypothesis that this time series is a white noise.  Looking at the autocorrelation function for the second differences, there is a similar pattern which indicates we would reject the hypothesis that this time series is a white noise process.  Based on the results of these sample autocorrelation functions and the complicated nature of the process, I determined that this time series could not be modeled using AR(1) or AR(2).
Model Estimating and Diagnostic Checking

Now that it’s been determined that we can use AR(1) and AR(2) for the Pre Baby Boom and the Baby Boom, the next step is to determine the parameters for these time series.  The following are the equations for the different time series.  Each of the 2 separate time periods has it’s own equations.
AR(1):  yt = φ1yt-1 + δ + εt
AR(2):  yt = φ1yt-1 + φ2yt-2 + δ + εt
where εt is white noise with mean 0.  Based on the type of data, it didn’t make sense that an moving average model would be appropriate.
Pre Baby Boom Era

For the Pre Baby Boom, fitting the series using least squares regression estimates gives φ1 = 0.0604 and δ = 0.1378  for the AR(1) model.  So
Yt = 0.0604Yt-1 + 0.1378 + εt
In order for this time series to be stationary, |φ1| < 1, which in this case it is.  The mean of this AR(1) series is μ = δ / (1 – φ1) = 0.1467.  The mean of the data is 0.1010.  R2 for this model is fairly low at 0.1079 while the adjusted R2 is 0.0539.  The means are fairly close, but the R2 are relatively low indicating this model may not be a good fit.
Looking at the AR(2) model, φ1 = -0.0792, φ2 = -0.1786 and δ = 1.0350.  So

Yt = -0.0792Yt-1 - 0.1786Yt-2 + 1.0350+ εt
In order for this time series to be stationary, φ1 + φ2 < 1, φ2 - φ1 < 1, and |φ2| <1.  All of these conditions are satisfied with this AR(2) model.  The mean of this time series is μ = δ / (1 – φ1 – φ2) = 0.8229.  As stated above, the mean of the data is 0.1010.  R2 for this model is 0.537 while the adjusted R2 is 0.4925.  So it appears that adding more data has helped improve the model, but given the differences in the means, this model, even though stationary, is probably not a good fit. 
Next, I looked at the residuals to determine if they are white noise.  This was done by looking at the Durbin-Watson statistic and the Box – Pierce statistic.

	
	Durbin-
	Box-Pierce Q
	

	
	Watson
	Statistic
	2 

	
	Statistic
	(20 lags)
	10% Sig/19 DF

	AR(1)
	2.5278
	23.7632
	27.20

	AR(2)
	2.6235
	24.0605
	27.20


One way to test for white noise is to look at the Durbin-Watson statistic, which a statistic of 2 would indicate that the residuals have no serial correlation and they are a white noise process.  Another way to test for white noise is to look at the Box – Pierce statistic which has a (2 distribution with K – q degrees of freedom.  If the Q statistic is less than the (2 distribution at a 10% significance level, we can not reject the null hypothesis that the residuals are a white noise process.  The Durbin-Watson statistic for both the AR(1) and AR(2) are above 2.  The Q statistic is less than the (2 statistic at a 10% significance level with 19 degrees of freedom indicating that we cannot reject the null hypothesis that either are a white noise process.  Based on this, I have concluded that the residuals of both the AR(1) and AR(2) models are a white noise process.  However, the AR(1) model is probably a better fit since the DW statistic is closer to 2 and it has a lower Q statistic.
Baby Boom Era
For the Baby Boom, fitting the series using least squares regression estimates gives φ1 = -0.0016 and δ = 0.1117  for the AR(1) model.  So

Yt = -0.0016Yt-1 + 0.1117 + εt
In order for this time series to be stationary, |φ1| < 1, which in this case it is.  The mean of this AR(1) series is μ = δ / (1 – φ1) = 0.1115.  The mean of the first differences of the data is 0.2158.  R2 for this model is fairly low at 0.1906 while the adjusted R2 is 0.1202.  Given these differences in the means and the R2 values, this model, even though stationary, is probably not a good fit based on the differences in the means.  

Looking at the AR(2) model, φ1 = 0.0107, φ2 = -0.0790 and δ = 1.1556.  So

Yt = 0.0107Yt-1 - 0.0790Yt-2 + 1.1556+ εt
In order for this time series to be stationary, φ1 + φ2 < 1, φ2 - φ1 < 1, and |φ2| <1.  All of these conditions are satisfied with this AR(2) model.  The mean of this time series is μ = δ / (1 – φ1 – φ2) = 1.0817.  The mean of the data is 0.2158.  R2 for this model is 0.4588 while the adjusted R2 is 0.3814.  So it appears that adding more data has helped improve the model, but given the differences in the means, this model, even though stationary is probably not a good fit either.

Next, I looked at the residuals to determine if they are white noise.  This was done by looking at the Durbin-Watson statistic and the Box – Pierce statistic.

	
	Durbin-
	Box-Pierce Q
	

	
	Watson
	Statistic
	2 

	
	Statistic
	(20 lags)
	10% Sig/19 DF

	AR(1)
	1.3633
	22.4488
	27.20

	AR(2)
	1.2530
	22.3416
	27.20


The Durbin-Watson statistic for both the AR(1) and AR(2) are less than 2.  This means that each of these residuals may or may not be a white noise process.  The Q statistic is less than the (2 statistic at a 10% significance level with 19 degrees of freedom indicating that we cannot reject the null hypothesis that either are a white noise process.  Based on this, I have concluded that the residuals of both the AR(1) and AR(2) models are a white noise process.  Even though the AR(2) model has a lower Q-statistic, the AR(1) model is the better fit though since the DW statistic is closer to 2 and there really isn’t a significant difference in the Q-statistic for either model.
Model Evaluation

The next step in evaluating the time series models is to compare our forecasted values to the actual data by using ex post forecasts.

Pre Baby Boom

For this time period, I used 1929 and 1930 data to project the first difference for 1931 to 1945.
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Clearly the AR(2) model is not a good fit.  The AR(1) model is steady and is not picking up the fluctuations.  In the long run, it probably does not do a very good job of forecasting birth rates and a more complex time series model is needed.
Baby Boom

For this time period, I used 1966 and 1967 data to project the first difference for 1969 to 1982.
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As I found with the Pre Baby Boom time period, the AR(2) model is not a good fit.  The AR(1) model is steady and is not picking up the fluctuations.  In the long run, it probably does not do a good job of forecasting birth rates.

Conclusion
This project tried to use various time frames between 1909 and 2000 to forecast future birth rates per 1,000 women using different time series models.  For the pre Baby Boom time period, we found that both the AR(1) or the AR(2) model could produce a homogeneous non-stationary series however neither showed to have a good fit with the data.  The AR(1) and the AR(2) models for the Baby Boom time period showed the same thing – the models could be homogeneous non-stationary series, but they did not fit the data.  This was made more evident by the ex post forecast comparisons.  For the Post Baby Boom time period, it was determined that neither the AR(1) or the AR(2) model were a white noise process.  For each of these different time periods, an AR(1) or an AR(2) model is probably not the best time series model since birth rates are a very complex time series.  A more powerful time series would need to be constructed in order to accurately predict future birth rates.
