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[Image source: Wikipedia http://en.wikipedia.org/wiki/Pollen]
Introduction


In order to investigate the seasonal patterns of allergies, I downloaded Google Trends data for web searches using the keyword “allergy” between January 2004 and August 2009. Data points are available for each week for a total of 296 observations. Since Google does not reveal raw search counts, the data has been normalized according to the relative volume of searches of the “allergy” keyword vs all Google searches with the first week of 2004 being 1.0. This means that the overall growth of Google as a search engine has been scaled out of the data and the series reflects the relative importance of allergy as a search trend vs all other searches. [It would have been interesting to the exponential growth of the searches as well but Google does not publish absolute search counts but only relative trends]. I restricted the data set to searches originating in the United States since I am expecting allergy trends to be strongly correlated with weather and pollen patterns which could be different in other parts of the world that Google has data for.


Microsoft Excel was used to do basic data cleaning and processing, autocorrelations and ARIMA models were calculated using the gretl open-source statistical package.

Model Specification


Since we already know that the Google data has been scaled relative to the total number of searches, I am not expecting to see any significant multi-year growth patterns in the data. Figure 1 seems to show a relatively stationary pattern, although the emerging 2009 results appear to have shifted higher than any other prior year. We note that allergy searches appear to have a major peak in the March-April timeframe of the year, followed by a smaller peak in the late August timeframe and searches appear to have the lowest relative volume over the winter holidays.
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Figure 1. Time Series Plot of Allergy searches Google “Trend”
Due to the strong seasonality patterns observed in the data, an autocorrelation analysis will likely produce significant autocorrelations at multiple lags between 1 and 52. Therefore, we proceed to deseasonalize the data before constructing our model. I used the ad-hoc seasonality index construction procedure described in Pindyck and Rubinfeld to construct a seasonal adjustment for each of the 52 weeks. [see Excel attachment]. The procedure involves taking a 52-week centered moving average to isolate the Seasonal and Irregular components of change and developing a table of adjustment factors to factor out the Seasonal component of change. While the seasonality patterns may vary year-by-year depending on weather and other random variations with the underlying causes of allergy, this simple method seems to go a long way toward eliminating the cyclical patterns observed within the original time series. The resulting deseasonalized series is plotted in Figure 2.

[image: image3.png]1.45

Time Series Plot: Deseazonalized Data

1.4

135

13

1.25

12 +

1.15 +
1.1

1.05

1

1/4/2004

1/4/2005 1/4/2006

1/4/2007

1/4/2008

1/4/2009





Figure 2. Deseasonalized Time Series Data

The new data series appears to show a small growth trend, with 2009 observations appearing to be shifted higher than prior years. Since we know that the data is relative to overall Google searches, this may be an indication that people are leveraging the Internet to do more research on self-diagnosis and self-care related to their allergies. Such trends and shifts in health awareness are likely a very slow and gradual process which does not  lead itself to being easily modeled using time series methods that are more suited to smaller-scale patterns. We proceed to construct a correlogram observing the autocorrelation and partial autocorrelation functions of the new series to look for further clues in our model specification process. [constructed using  gretl] I limited the chart to the first 52 lags and the results are shown in Figure 3. We note a couple of main features of the autocorrelation analysis:

· The first three lags seem to have the strongest correlations indicating that the process is likely AR(3) or ARI(3), even though several other lags seems to pass the 1.96/SQRT(T) significance indicator. Given the strong seasonal pattern that was observed before deseasonalizing the data, we think that the drop-off in correlations indicates that we have gone a long way toward having a stationary data series, although there is certainly room for improvement using more sophisticated adjustments.

· We also note that we have multiple non-zero correlated lags throughout the 52 weeks, so despite the fact that they appear to be diminishing over time the process is likely a poor fit for a MA model of a small order, further confirming our intuition that the process will likely be modeled by an AR or ARI model.
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Figure 3. Autocorrelation and Partial Autocorrelation of Deseasonalized series
Finally, since we noted a small growth trend in the de-seasonalized data we have also modeled the autocorrelation and partial autocorrelation functions of the first differences of the time series which are shown in Figure 4 attempting to account for the small linear trend noted. We note that taking the first differences seems to offer a marginally more stationary process with correlations showing a stronger drop-off pattern in later lags compared to the original process. The first differences also confirm that the process is likely AR of order 2 (ARI (2,1,0)). However we want to be careful with using first differences to improve our model since this comes with an associated loss of information in the AR process. As noted above, the trend in the data, if any, seems to be very slow and there is a substantial stochastic variation even in later lags which is not easily modeled by either an AR or ARI process. This could also be an artifact from Google’s own scaling and normalization of the underlying search trend data, which they have not documented in a very detailed way anywhere on their website.
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Figure 4. Autocorrelation and Partial Autocorrelation of First Differences in the Deseasonalized series
Model Estimation and Diagnosis


We proceed to evaluate AR(2) and AR(3) models which seem to be most promising based on our initial analysis as well as an ARI(2,1,0) model. The estimation was done using the gretl statistical package, which uses a maximum likelihood algorithm in the process. [full gretl output is shown in the appendix]. Table 1 below we have chosen the Akaike criterion (AIC) to compare the relative information strength of the models.

	Process
	AIC

	AR(2)
	-959.6346

	AR(3)
	-970.1083

	ARI(2,1,0)
	-937.5592


Table 1. Comparing the Akaike criterion for the three models.

The AIC confirms our intuition that taking first differences results in additional loss of information (the AIC being based on entropy). And the AR(3) model seems to be preferable to the AR(2) despite the penalty of having an additional parameter. We proceed with our diagnosis process plotting a correlogram (Figure 5) of the residuals of the AR(3) model and confirming that the Box-Pierce Q statistic is not significant for the first 52 lags. [see Excel attachment] The low Box-Pierce values lead us to fail to reject the null hypothesis that the residuals are white noise, despite a few residuals seeming to pass the 1.96/SQRT(T) line on the correlogram.
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Figure 5. AR(3) Resudual Correlogram : Autocorrelation and Partial Autocorrelation
Model Validation


Finally, we want to evaluate the overall fit of the model and test its forecasting usefulness. I went back and re-estimated the AR(3) model by restricting the data set to exclude the weekly observations is August 2009, which gives us five observations that we can use to test the forecasting ability of our model. Figure 6 shows the actual vs fitted plot for the full model from January 2004 through July 2009. We observe that the model captures some ups and downs in the data but underestimates the magnitude of the spikes with 2009 observations appearing to have a level of volatility that the model struggles with [at a micro-level in the graph the model seems to be somewhat slow to react to the data trends, although it seems to be directionally correct].
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Figure 6. Actual vs Fitted AR(3)

Finally, we compare the forecast for the last five weekly observations to the actual in Figure 7 (also plotting the 95% confidence interval for the forecasts). We note that the model seems to pick-up some of the downward trend and is generally not too far from the actual [note that the Y axis of the graph is very restricted which makes the differences appear larger], but again the underlying data seems to have significant short-term volatility and we conclude that modeling consumer trends is especially hard, which is confirmed by the very wide 95% confidence interval of the AR(3) model.
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Figure 7. August 2009 Forecast vs Actual and 95% confidence interval
Appendix: Gretl output

AR(3) Model: 

Function evaluations: 36

Evaluations of gradient: 8

Model 8: ARMA, using observations 2004/01/04-2009/08/30 (T = 296)

Estimated using Kalman filter (exact ML)

Dependent variable: DeSeazonalized

Standard errors based on Hessian

             coefficient   std. error   t-ratio   p-value 

  --------------------------------------------------------

  const       1.16278      0.00650690   178.7     0.0000   ***

  phi_1       0.257585     0.0574222      4.486   7.26e-06 ***

  phi_2       0.127997     0.0590067      2.169   0.0301   **

  phi_3       0.205663     0.0575870      3.571   0.0004   ***

Mean dependent var   1.162656   S.D. dependent var   0.051472

Mean of innovations  0.000319   S.D. of innovations  0.046185

Log-likelihood       490.0542   Akaike criterion    -970.1083

Schwarz criterion   -951.6565   Hannan-Quinn        -962.7206

                        Real  Imaginary    Modulus  Frequency

  -----------------------------------------------------------

  AR

    Root  1           1.2982     0.0000     1.2982     0.0000

    Root  2          -0.9603    -1.6803     1.9353    -0.3326

    Root  3          -0.9603     1.6803     1.9353     0.3326

  -----------------------------------------------------------

AR(2) Model: 
Model 9: ARMA, using observations 2004/01/04-2009/08/30 (T = 296)

Estimated using Kalman filter (exact ML)

Dependent variable: DeSeazonalized

Standard errors based on Hessian

             coefficient   std. error   t-ratio   p-value 

  --------------------------------------------------------

  const       1.16272      0.00526232   221.0     0.0000   ***

  phi_1       0.293414     0.0577573      5.080   3.77e-07 ***

  phi_2       0.187736     0.0577827      3.249   0.0012   ***

Mean dependent var   1.162656   S.D. dependent var   0.051472

Mean of innovations  0.000195   S.D. of innovations  0.047179

Log-likelihood       483.8172   Akaike criterion    -959.6343

Schwarz criterion   -944.8729   Hannan-Quinn        -953.7241

                        Real  Imaginary    Modulus  Frequency

  -----------------------------------------------------------

  AR

    Root  1           1.6552     0.0000     1.6552     0.0000

    Root  2          -3.2181     0.0000     3.2181     0.5000

  -----------------------------------------------------------

ARI(2,1,0)
Model 10: ARIMA, using observations 2004/01/11-2009/08/30 (T = 295)

Estimated using Kalman filter (exact ML)

Dependent variable: (1-L) DeSeazonalized

Standard errors based on Hessian

             coefficient    std. error   t-ratio     p-value 

  -----------------------------------------------------------

  const       0.000504694   0.00145800     0.3462   0.7292   

  phi_1      -0.600500      0.0547813    -10.96     5.83e-028 ***

  phi_2      -0.348061      0.0547333     -6.359    2.03e-010 ***

Mean dependent var   0.000714   S.D. dependent var   0.058084

Mean of innovations  0.000116   S.D. of innovations  0.048685

Log-likelihood       472.7796   Akaike criterion    -937.5592

Schwarz criterion   -922.8113   Hannan-Quinn        -931.6538

                        Real  Imaginary    Modulus  Frequency

  -----------------------------------------------------------

  AR

    Root  1          -0.8626    -1.4591     1.6950    -0.3350

    Root  2          -0.8626     1.4591     1.6950     0.3350

  -----------------------------------------------------------
