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Daily Temperature

Daily Temperatures in Bridgehampton, NY
Objective:
This project will analyze the daily high temperatures at Station 300889, Bridgehampton, NY, and attempt to fit an ARIMA model to the data.  In general, it seems that the temperature we experience each day is positively correlated with the temperature we experience in the days preceding that day.  In other words, in the Northeast, you can usually expect that if we experienced freezing cold temperatures on January 15, 2010 we can usually expect similar temperatures on January 16, 2010. This project will analyze the seasonal pattern of temperatures in Bridgehampton and attempt to determine how the temperature on a given day relates to the temperature during the previous days.

Data:

The daily temperature data was collected from the NEAS archives.  The data supplied contains daily high and low temperatures from August 1930 until year-end 2005.  However, due to data completeness, I decided to only use full year high temperature data from 1980 - 2005.  Within this stretch of time, which includes 9497 data points, only 3 data points were not provided.  By interpolating (averaging) the surrounding two data points I was able to produce an approximation for these three data points.  Since the number of data corrections is small and they are spread throughout the data, this will not have a material affect on the time series analysis.  Additionally, using 25 years of data is a large enough sample to remove the affect of random fluctuations and produce significant results.
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As we can see from the graph above, the temperature in Bridgehampton, NY demonstrates a clear seasonal pattern – high temperatures in the summer months and low temperatures in the winter months.  The seasonality displayed above will unfortunately disrupt our time series analysis.  Therefore, before applying the data to a time series model we must first remove the seasonality.

Seasonality

Before removing the seasonality, we must smooth the data.  Smoothing removes the rigidity within the data which can distort the seasonality calculation. In order to remove the rigidity, I used a 7-day centered moving average.  The temperature for each day is recalculated as a 25 year average of the three days prior and three days following that day.  As an example, the smoothed temperature on December 9th, 1992 is calculated as the average of the 175 data points that make up the high temperatures on December 6th-8th, 9th, and 10th-12th, over the 25 years.  Below graph the daily high temperatures in 1992 before and after smoothing.

[image: image2.emf]Raw Temperatures - YEAR 1992
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[image: image3.emf]Smoothed Temperatures - YEAR 1992
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Now that the data is smoothed, we can now de-seasonalize the data.  We do this by calculating a seasonality index for each day of the year.  This seasonality index is computed by taking the smoothed average temperature for the particular day within the dataset and dividing it by the average temperature for the dataset as a whole.  We then apply the seasonality index to each daily high temperature from the raw (unsmoothed) dataset.  This in affect has normalized each day for its seasonal skew.  In other words, a cold day in December is put on a comparable basis to hot summer day in August.

Returning to our December 9th, 1992 example, the smoothed centered moving average temperature for December 9th is 45.0 degrees.  The average temperature for the entire data set is 59.8 degrees.  Therefore, the seasonality index for December 9th is 45.0/59.8 = .753.  The actual high temperature in December 9th, 1992 is 30 degrees.  Therefore, the seasonality adjusted trend for December 9th, 1992 is 30/.753 = 39.8 degrees.
[image: image4.emf]Seasonality Adjusted Temperatures - YEAR 1992
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As we can see when comparing the seasonality adjusted graph above with the unadjusted temperatures for the same time period, the adjustment has flattened the curve by removing the curved bow (high temps in the middle – low on the ends) due to seasonality.
Sample Autocorrelation Function

Now that we have removed the seasonality from the data, we can begin the time series analysis.  We must first check to ensure that the data is stationary (invariant with respect to time).  By visual inspection of the seasonality adjusted temperature graph above, there does not seem to be any inherent trend in the data.  Additionally, inspecting the initial raw data graph for all years there also doesn’t seem to be any long-term trend within the dataset.  The lack of trend suggests that the series is stationary. However, further proof can be obtained by viewing the sample autocorrelation function.
[image: image5.emf]Sample Autocorrelation Function
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We can see from the sample autocorrelation function above that 
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falls off rather quickly toward zero as the lag k increases.  This is another indication that the time series is stationary.  Furthermore, we can observe that the first few data points (0.56, 0.19) are greater than zero.  This suggests that the true value of the autocorrelation function is greater than zero, and hence, the process is not a white noise process.  According to Bartlett, if a time series has been generated by a white noise process, the sample autocorrelation coefficients for k>0 are distributed approximately according to a normal distribution with mean 0 and standard deviation 1/
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.  In this case, since the value of the first two sample autocorrelation coefficients are greater in magnitude than 2*(1/
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) =0.10 we can be 95% sure that the true autocorrelation coefficient is not zero.  Therefore, we can conclude the time series is not generated by a white noise process.
Model Specification

The sample autocorrelation function falls off rather quickly toward zero as the value of the lag (k) increases.  Specifically, the sample autocorrelation coefficients seem to approach zero after lag 2.  This suggests that the data could be modeled by an autoregressive process of form AR(1) or AR(2), indicating that the temperature in any given day may be a function of the temperature in the previous day (AR(1)) or the temperature is a function of the temperature in the two previous days (AR(2)).  Further statistical tests will be performed to choose the appropriate model.
AR (1)
	Regression Statistics

	Multiple R
	0.569584002

	R Square
	0.324425936

	Adjusted R Square
	0.32256485

	Standard Error
	6.562012944

	Observations
	365


	 
	Coefficients
	Standard Error
	t Stat

	Intercept
	24.85931224
	2.577345421
	9.645316471

	X Variable 1
	0.576205725
	0.04364183
	13.20306044


AR (2) 

	Regression Statistics

	Multiple R
	0.589913916

	R Square
	0.347998428

	Adjusted R Square
	0.344386231

	Standard Error
	6.454141068

	Observations
	364


	 
	Coefficients
	Standard Error
	t Stat

	Intercept
	29.75412225
	2.866491381
	10.37997967

	X Variable 1
	0.681753222
	0.052003509
	13.10975428

	X Variable 2
	-0.189597699
	0.052226148
	-3.630321327


From the data above, we can observe that the t-Statistic for the previous day(X variable 1) is high in each scenario.  This indicates that that there is a strong correlation between the temperature on a given day and the temperature on the day prior to that day.  

It is important to note that the R –squared value does not materially increase by adding an extra variable to the equation (AR(1)(AR(2)), and the standard error does not materially decrease.  These two observations indicate that the fit of the AR(2) model is not materially better than that of the AR(1) model.  The principle of parsimony states that when comparing competing models if a model does not present significantly greater predictive abilities, the simpler of the two models should be chosen.  Therefore, by the principle of parsimony I will choose the AR(1) model.
The Durbin Watson statistic tests whether the residuals demonstrate any serial correlation.  The Durbin Watson statistic for the AR(1) model is 1.78.  We can use N=100 for this test statistic since it is the largest value provided by Table 5(and we have 366 days).   Since, there is 1 explanatory variable in this case, dl=1.65 and du=1.69.  Therefore, since 1.69<DW<2.0 and we can accept the null hypothesis that the residuals demonstrate no serial correlation.  Similarly for the AR(2) model, the DW statistic is 1.98.  Using N=100 observations and 2 explanatory variables, dl=1.63 and du=1.72.  Again, 1.72<DW<2.0, therefore we can accept the null hypothesis that the residuals demonstrate no serial correlation in this model as well.  
Box Pierce Q-Statistic tests whether the residuals are generated by a white noise process.

If the model is specified correctly, we would expect the residuals to be nearly uncorrelated with each other, ie)- residuals should resemble a white noise process.  The Q-statistic for the AR(1) model with N=100 observations is 84.3.  The critical value with 90% confidence for this test with d.o.f. 100-1 = 99 is 117.4.  Therefore, since Q< 117.4, we can accept the null hypothesis that the residuals are generated by a white noise process.  A similar calculation for the AR(2) model will show the Q=79.6 for N=100 observations. The critical value with 90% confidence for this test with d.o.f. 100-2=98 is 116.3.  Therefore, for the AR(2) model we also can accept the null hypothesis that the residual are generated by a white noise process.
Conclusion:
The Durbin-Watson and Box Pierce statistics above demonstrate that the residuals in both proposed autoregressive models demonstrate no serial correlation and are likely the result of a white noise process.  Again due to the principle of parsimony, we will choose the AR(1) model.
The equation for the AR(1) model is 
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Based on this equation we can determine the temperature our model would have predicted based on the previous days temperature.
[image: image11.emf]Actual vs. Predicted (AR(1))
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As we can see from the graph above, our model does a decent job in predicting temperatures when viewing the year in entirety, but doesn’t do a great job on a day-to-day basis. (Note: The similar graph comparing actual to predicted values produced by the AR(2) model, further demonstrates that the addition of the extra variable doesn’t significantly improve our predictions).  However, we can see that on days where there were abnormally high or low temperatures, such as those in late May, our model accurately predicts that the temperature in the following day will also be higher than normal.  A more sophisticated model may consider the affect of storms, effects of warm/cold fronts, moon/tidal patterns, etc.  In any case, even the more sophisticated technology should find that a good predictor of the temperature in Bridgehampton, NY on a given day is the temperature on the previous day.
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