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Time Series VEE project – Spring 2006 session


Time Series to predict birth rate in the province of Quebec
I examined the birth rate in the province of Quebec to see if we are able to predict future birth rates with simple models such as AR(1), AR(2), ARMA (1,1), MA(1) or MA(2). Since 2004, there has been a lot of articles in newspapers saying that there was a notable increase in the birth rate. Many factors can be taken in consideration, but I think that the most important are the huge improvement in the benefits given to the new parents (up to 52 weeks with more than 55 % of the earnings) and the creation of kindergartens at 7 $ per day. It is possible that all these changes will affect the birth rate and will make the predictions more difficult. The birth rate data were obtained from the Institut de la statistique du Québec (www.stat.gouv.qc.ca). The birth rate is defined as the number of live childbirths per 1 000 women aged 15-44. The last century history has shown different lifestyles that have been caused by the World War II. I broke my data in three sections: Pre Baby-Boom (1900-1945), Baby-Boom (1946-1971) and Post Baby-Boom (1972-2006). Then I modeled different time series using various models. Once the models have been specified, I used the parameters to forecast data and compared this to see if it is a good model.
Model specifications :

The first step of the work is to determine if the time series is stationary. To do that, we observe the Correlogram of the data (using the autocorrelation functions for all years). You can see the calculations in the sheet “Complete data”. The graph below shows that correlogram.
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To check for stationarity, we expect a quick drop off to 0, which is not really the case here. The drop off to 0 is made around lag 43 and then it continues to drop and finally it increases. It indicates a non-stationary series. Next, I looked at the first difference to see if it would lead to stationarity. See the graph on next page. 
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Here, we see a quick drop off to zero, but again it is increasing and then dropping before staying near zero. These graphs suggest the data should be broken in at least 2 different series. I decided to break it in 3 series, because it is known that World War II affected the birth rate everywhere in North America. So, I did 3 different series: Pre baby-boom, baby-boom and Post baby-boom.

Pre Baby-Boom (1900-1945)

The correlogram of that series still doesn’t show stationarity.
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Then, I took the first difference to see if I can find the stationarity that I was looking for. Here is the graph.
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In that graph, even if it doesn’t start at one, we can see a quick drop off and then a relatively smooth pattern after that. It can indicate that the series may be homogeneous non-stationary series of order 1.

Baby-Boom (1946-1971)
Once again, the correlogram still doesn’t show the stationarity that we were looking for.
[image: image5.emf]Correlogram - Baby-Boom (1946-1971) 
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I took the first difference, to see if it would show stationarity. The following graph shows the first differences.
[image: image6.emf]Correlogram - Baby-Boom (1946-1971) birth rate time series
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Here, we can still see the quick drop-off and then a relatively smooth pattern, showing that the series can be a homogeneous non-stationary series of order 1.

Post Baby-Boom (1972-2006)
Once again, the correlogram doesn’t show stationarity.
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I took the first differences to see if I would obtain the desired stationarity. See the graph on the following page:
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We don’t see the expected stationarity. There’s a rapid drop-off to zero, which suggests that the series is not a white noise. I tried to take the second differences to see if we would find the stationarity desired. Once again, there is a similar pattern and there are no stationarity. We would still reject the hypothesis that the series is a white noise. After looking at the correlogram of the original series and to those of to the 1st and 2nd differences, I determine that the series can not be modeled by an AR(1) or AR(2).
Model Estimating and Diagnostic Checking

We can use AR(1) and AR(2) models for the Pre baby-boom and for the baby-boom periods. We have to find the parameters for those time series. Here are the equations for the AR(1) and for the AR(2) series.

AR(1): yt = φ1yt-1 + δ + εt
AR(2): yt = φ1yt-1 + φ2yt-2 + δ + εt

where εt is white noise with mean 0. 

Pre baby-boom

At first, I tried to find the model using the original data, without taking the first differences. Using the least squares regression estimates, we can find the parameters for the AR(1) and for the AR(2). Let’s begin with the AR(1). The estimates give us φ1= 0.9713 and δ = 0.7335. The equation would be:

yt = 0.9713yt-1 + 0.7335 + εt
The series will be stationary if | φ1 | < 1, which is the case. The mean of the AR(1) series is μ = δ/(1-φ1). This gives us μ = 25.59. The mean of the data is 33.4. R2 for the model is 0.9578 and the adjusted R2 is 0.9568 which are very close of 1. The means are near each other and the R2 is indicates that this model can be a good fit. So, even if the correlogram show that there may be no stationarity, the model show stationarity for the AR(1).
I looked at the AR(2) to see if it can be a better model than the AR(1). The parameters are: φ1 = -0.0429, φ2 = 1.019 and δ = 0.5975. The series equation is:
yt = -0.0429yt-1 + 1.019yt-2 + 0.5975 + εt

In order to have a stationary series, there are 3 conditions that must be satisfied:

1) φ1 + φ2 < 1

2) φ2 – φ1 < 1

3) | φ2 | < 1

Conditions 2 and 3 are not satisfied, so the series cannot be an AR(2). 

After finding what could possibly be the model of the time series, we had to look at the residuals to see if they are white noise. This was done by looking at the Durbin-Watson statistic and at the Box-Pierce Q statistic. If the model has been correctly specified, the residuals should resemble to a white noise process because we have assumed that the error terms in the process must be independent and normally distributed. I found a Durbin-Watson statistic of 1.874, which we can consider of 2. When the Durbin-Watson statistic is 2, we consider that there are no serial correlations. The Durbin-Watson statistic is only an indicator, we have to relieve on another test, which will be done with the Box-Pierce Q statistic (BPQS). I looked at 20 lags for this statistic. The BPQS statistic is below the critical value, so we cannot reject the null hypothesis that the residuals are a white noise process. Even more, when I looked at the χ² p-value for 20 lags, the p-values are well above 10 %, so I cannot reject the null hypothesis.
All tests suggested that the null hypothesis cannot be rejected, so the residuals seem to resemble to a white noise process. Probably that the AR(1) model is a good fit for that time series.

Given that I first think that the series was not stationary, I also did the work for the time series with the first difference, to see if there is a better fit. Beginning with the AR(1), I found the parameters, using the least-squares regression estimates. The estimates are φ1  = 0.0347 and δ = -0.185. So the equation is
yt = 0.0347yt-1 - 0.185 + εt
There will be stationarity if | φ1 | < 1, which is the case here. The mean of this AR(1) series is μ =  -0.19, which is pretty near of the mean of -0.23. Though, R² and the adjusted R² are low, being pretty near of zero.
Then, I looked at the AR(2) model to see if it would be a better fit for the series. Using the least squares regression estimates, I found the following parameters: φ1 = -0.1498, φ2 = 0.0565 and δ = -0.2336. The series equation is:

yt = -0.1498yt-1 + 0.0565yt-2 – 0.2336 + εt

The 3 conditions said before are respected, which tells us that the series is stationary. The R²  and the adjusted R² are still low, but a little higher than the AR(1) model. The mean of an AR(2) model is μ = δ/(1-φ1 – φ2). This gives in the present case, μ =  -0.21 which is nearer of the mean of -0.23 than the AR(1) model.
I looked at the residuals to see if there is serial correlation or if the residuals are a white noise. I did this with the Durbin-Watson statistic and with BPQS. Here are the results
	
	Durbin-Watson
	BPQS
	χ ²

	
	
	20 lags
	10 % sig/ 19 df

	AR(1)
	1,9465
	0,1173
	27,2036

	AR(2)
	1,8517
	4,611
	27,2036


For the 2 models, the Durbin-Watson statistic is near enough of 2, to say that there are no serial correlations between residuals. The BPQS statistic for the AR(1) and for the AR(2) models is below the critical value, so we cannot reject the null hypothesis that the residuals are a white noise process. Even more, when I looked at the χ² p-value for 20 lags, the p-values are well above 10 %, so I cannot reject the null hypothesis. I chose the AR(1) model because the Durbin-Watson statistic is nearer of 2.

Given the results, there is a chance that the 1st difference will give a better fit.

Baby-boom

I did the same exercise that I did for the Pre Baby-boom era, using least-squares regression for the initial model. The parameters are φ1 = 1.0636 and δ = -2.2987 for the AR(1) model. The equation is 

yt = 1.0636yt-1 - 2.2987 + εt

As it was said before, the series will be stationary if | φ1 | < 1, which is not the case here. The time series cannot be determined with an AR model.
I did the same work but for the 1st differences time series. At first, I tried the AR(1) model. Using the least squares regression estimates, I found the following parameters: φ1  = 0.5142 and δ = -0.3456 that gives the equation:

yt = 0.5142yt-1 – 0.3456 + εt

The series satisfies the condition | φ1 | < 1, which means that the series is stationary. The R² is 0.2867 and the adjusted R² is 0.2543. It means that more data would have been needed to explain the model.  μ = -0.71 which is not exactly the mean of the series, which is -0.62.
Then, I checked if the AR(2) model could fit the data. Still using the least regression estimates, I found those parameters: φ1 = 0.1955, φ2 = 0.4612 and δ = -0.2315. The series equation is:

yt = 0.1955yt-1 + 0.4612yt-2 – 0.2315 + εt
The series satisfies the 3 conditions enumerated before, so it is stationary. The R² is 0.3551 and the adjusted R² is 0.2907, which are slightly higher than those of the AR(1). It is not significantly high to say that the data fit better with the AR(2) model. μ = -0.67 which is slightly nearer than the AR(1) model.
The last step is to check if the residuals are a white noise process. As it was made before, I took the Durbin-Watson statistic and the Box-Pierce Q statistic to determine if there are serial correlations between residuals, and that, for the AR(1) and for the AR(2) models.

	
	Durbin-Watson
	BPQS
	χ²

	
	
	20 lags
	10 % sig/ 19 df

	AR(1)
	1,2838
	4,2843
	27,2036

	AR(2)
	1,1808
	1,1336
	27,2036


The Durbin-Watson statistics are less than 2 for both models, meaning that the residuals may or may not be white noise process. The Box-Pierce Q statistic is less than χ² p-value for 20 lags for the AR(1) and AR(2) models, which means that we cannot reject the null hypothesis that there are no serial correlations between residuals. Both models could possibly be a good fit but I chose the AR(2) because the mean is closer and R² is better.
Model evaluation
Now, only for the Pre baby-boom and for the baby-boom eras, I must compare the forecasted values to the actual data by using ex-post forecasts for the AR(1) and AR(2) model. For the Pre baby-boom era, I tried with the original data and with the first differences given that both show stationarity. For the Baby-boom era, I only did it on the 1st difference given that the original series was not stationary.
Pre Baby-Boom

I used 1920 to project the original series for 1921 to 1945. The formula that I used for the AR(1) is
yT(1) = 0.9713yt + 0.7335
yT(2) = 0.9713 yT(1)  + 0.7335

.

.

.

yT(u) = 0.9713 yT(u-1)  + 0.7335

Here is the graph of the comparison between the forecasted data and the actual data:
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It sounds that the AR(1) model is probably not a good fit because it doesn’t take in account the fluctuations that could possibly happens with the birth rate. It seems that a more complex model would be necessary.
Then, with the 1st differences, we can forecast with AR(1) and with AR(2). I took 1920 and 1921 to project the 1922-1945 series. The formula that I used for the AR(1) model is:
yT(1) = 0.0347yt - 0.185

yT(2) = 0.0347 yT(1)  - 0.185

.

.

.

yT(u) = 0.0347 yT(u-1)  - 0.185

The formula that I used for the AR(2) model is:
yT(1) = -0.1498yt + 0.0565yt-1  - 0.2336

yT(2) = -0.1498 yT(1) + 0.0565 yT(2) - 0.2336

.

.

.

yT(u) = -0.1498 yT(u-1) + 0.0565 yT(u-2) - 0.2336

Here is the graph including the actual data and the forecasted series with the AR(1) and the AR(2) models:
[image: image10.emf]Ex post forecast 
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It appears that the AR(1) and the AR(2) models are not picking up fluctuations, the 1st differences are always the same from year to year. AR(1) and AR(2) models are not good models for that series. A more complex model would be needed.

Baby-Boom

For that part, I didn’t use the original series since it is not stationary. I forecasted an AR(1) and an AR(2) models for the 1st differences series. The formulas that I used are the same that I took for the Pre Baby-boom (with the appropriate parameters). Here is the graph of the results:

[image: image11.emf]Ex post forecast 
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It clearly shows that the AR(2) model is not a good fit, neither is the AR(1) model since it doesn’t take in account the fluctuations in the 1st differences. Neither of the models are a good fit, a more complex model would be needed to fit the data.
Conclusion

In this project, I tried to find a time series model that would fit the birth rate in the province of Quebec from 1900 to 2006. Relying on history, I separate the data in 3 eras that I thought would make sense, Pre baby-boom, baby-boom and finally post baby-boom. For that, I had to take the 1st differences to get stationary series. Though, I tried for the Pre baby-boom and for the Baby-boom eras with the original series to see the difference. The Post baby-boom era is not stationary, it could not fit in a time series model. For the Pre baby-boom and the Baby-boom eras, the data were stationary and the residuals had no serial correlation. On the other hand, the forecasted data did not show the fluctuations that would be necessary to have the correct model. A more powerful time series would be needed to predict accurately the future birth rates.
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