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Introduction

For my student project, I wanted to find a topic of interest to me as you suggested on your website. As
the middle child of three children, I am the only one that is married. That is all soon to change;
however, as in 2010 both of my siblings are getting married: one in March and one in May. Despite
numerous reasons for the May wedding date to be changed to June, my sister is insistent that the date
be in May. Why? Because she claims that everyone gets married in June and she does not want to be a
June bride. So, I decided that for my student project I would examine the frequency of marriages by
month. After researching this topic on the internet, the best data I found was from the United Kingdom.
Although this data may not be helpful in convincing my sister to change her wedding data, the data
was complete and appropriate for my time series analysis. For my student project, I tested the data for
white noise, seasonality, and stationarity using the statistical tests and methods outlined in the course.
Last, I constructed one possible model using the Yule Walker equations for parameter estimation and
ordinary least squares parameter estimation and tested the model using an ex-post forecast.

Data

I found my data on the website www.statistics.gov.uk. The exact link to my data set is:
www.statistics.gov.uk/STATBASE/xsdataset.asp?More=Y&vlnk=5286&All=Y&B2.x=137&B2.y=11.
The data set provides the number of marriages by month of occurrence from 1947-2003. Both single
years and five year bands of data are provided. In constructing my time series model, I used the single
year data. The data is from the geographical region of England and Wales. The data set provides
indicators for those months that contain five Saturdays in the month as opposed to four. This would be
of interest since Saturday is the more popular day for wedding ceremonies. Due to the limited
complexity of my model, I did not consider this element in my model. The original data and
descriptions of the data as downloaded from the website can be found on the first tab in my
spreadsheet labeled “Original Data”.

Topic

Originally, I planned to examine and adjust my data for stationarity and seasonality and then construct
various possible models on which I could perform diagnostic tests and produce forecasts. However, as
I began examining the data for seasonality and stationarity, the model appeared more complex than I
anticipated. As a result, I decided to primarily focus on examining the nature of my data and then
constructed only one model using the methods of the course. I then performed an ex-post forecast
using the model.

Statistical Techniques

Examining the Original Data Set
The original data set had 57 years of data. The graph of this data is shown below:
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Number of Wedding by Month
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Graph 1

After constructing this graph, I realized that it would be difficult to examine the data for patterns such
as seasonality and stationarity with so many data points. I also wanted to use some of the data points in
ex-post forecasts if I was able to construct a model. For this reason, rather than using years 1947-2003
to construct my model, I decide to reserve 2001-2003 for ex-post forecasts and only use 1991-2000 (10
years of data and 120 data points) to construct my model. Throughout my documentation when I refer
to the original data, I am referring to years 1991-2000.

Testing for White Noise: Bartlett Test and Box and Pierce Test
Before beginning construction of my model, I wanted to ensure that my series had not been generated
by a white noise process. A white noise process is one in which there is no correlation between data
points (ρk = 0 for all k<>1) and therefore little value is gained from using a model to forecast the series.
To test if the data had been generated by a white noise process, I used tests by Bartlett and Box and
Pierce. The Bartlett test states that if a time series has been generated by a white noise process, then the
sample autocorrelations are approximately normally distributed with mean 0 and standard deviation
(1/√T) where T is the number of observations in the series. For a normal distribution, we know that
95% of all points lie with two standard deviations of the mean. Therefore, using Bartlett’s test, if any
sample autocorrelation coefficient is greater than two standard deviations away from zero, we can be
95% sure that the true autocorrelation coefficient is not zero and not from a white noise process. My
intermediate calculations for the Bartlett test can be found on the “Formatted Data-10 yrs” tab. Using
this test, 31 of my sample autocorrelations implied that the data was not generated from a white noise
process; however, 88 implied that the series was generated by a white noise process. Clearly I needed



Rachel Bowling
Time Series

Summer 2009
Project Documentation

3

to look into this possibility more thoroughly. To do so, I used the Box and Pierce test. The Box and
Pierce Test uses the test statistic: Q = T ∑ ρk

2 where the sum is taken from k=1 to k=K where K is the
number of sample autocorrelations used. Box and Pierce showed that this test statistic is an
approximate chi square distribution with K degrees of freedom which implies that if the Q test statistic
is greater than the 5% critical value (for example), then it is 95% certain that the true autocorrelation
functions are not all zero. My intermediate calculations for the Box and Pierce test can be found on the
“Formatted Data-10 yrs” tab. Using this test with T=120, K=119, the value of Q is 396.634. I assumed
K=120 in order to use the Chi Square table in the text. The 5% critical value for K=120 is 146.57; the
0.5% critical value is 163.64. With Q exceeding both of these values, this implied that I can be 99.5%
sure that the true autocorrelation functions are not all zero and therefore the times series has not been
generated by a white noise process. Knowing this, I was able to proceed in my model construction for
this data.

Stationarity
To learn more about the nature of my data set, I wanted to determine if the data was stationary. A
stationary series is assumed to be unchanging with respect to time; that is, the characteristics of the
stochastic process such as the mean, variance, and covariance should not change at different points in
the series. Before examining the data, I thought that perhaps the data would not be stationary due to
population growth over time. I expected to observe an overall upward trend in the data. However; after
examining the graphs of the original data, it was clear that an upward trend was not evident; in fact, it
appeared that a decreasing trend was evident.

Number of Weddings by Month: Years 1991-2000
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As my first test of stationarity, I estimated the mean and variance of the series at various points in the
series: E(yt), E(yt+12), E(yt+24), etc. and the corresponding variance. If the series is stationary, these
sample means taken at different points should be approximately equal; the sample variances taken at
different points should also be approximately equal. The descriptive statistics for each point in the
series are shown on the “descriptive stats” tab in my spreadsheet. A summary of the means and
variances are shown below:

Sample Means Corresponding

Sample Variances

E(yt) 106,565.51 19,327,803,281.46
E(yt+12) 105,359.33 18,865,084,783.20
E(yt+24) 103,561.91 18,240,601,191.08
E(yt+36) 103,103.44 18,182,215,140.44
E(yt+48) 104,274.04 18,805,170,474.07
E(yt+60) 102,618.92 18,305,417,218.52
E(yt+72) 101,620.85 17,732,405,332.43
E(yt+84) 101,647.17 17,514,830,572.09
E(yt+96) 102,613.46 17,237,765,770.78

E(yt+108) 111,036.75 20,040,522,614.93

Although the variation is not substantial, it does not appear that the means and variances are invariant
with respect to time which implies a nonstationary process. As an additional measure of stationarity,
the sample autocorrelation function ρk of a stationary series should decrease quickly as k increases. If
ρk does not decrease quickly as k increases, this implies a nonstationary series. As shown in the graph
of the sample autocorrelation below, the absolute value of ρk never exceeds 0.5; however, it does not
decline to lower values until substantially later in the series.
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Sample Autocorrelation Function
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Graph 3

On page 519 of the text, it is stated that if -1< ρk < 1 for all k>0, this is sufficient condition for our
purposes to assume the series is stationary although the actual conditions for stationarity are more
complex. Based on this criterion, the series would be considered stationarity; however for
completeness I examined first and second differences to determine if this improved the stationarity of
the data at all. The graphs of the autocorrelation functions of the first and second differences are shown
below. It is clear that these differences do not improve stationarity.
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Sample Autocorrelations-First Differences
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Sample Autocorrelations Second Differences
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For my project, I assumed that my data was from a stationary process.

Seasonality
After examining my data for stationarity, I examined it for seasonality. Before examining the graph of
my data, I expected the data to exhibit seasonality as it seems more people get married in summer
months and perhaps around the Christmas and New Year’s holidays. After examining my graph of the
data (see Graph 2 above), a pattern was obvious. To further examine and attempt to remove the
possible seasonality in my data, I tried a few of the techniques presented in the course. First, I
calculated the sample autocorrelations of the data. The autocorrelation function describes how much
correlation there is between neighboring data points in the series. I used ρk to denote my sample
autocorrelations. Using this notation, ρ1 describes the correlation between neighboring data points, ρ3

describes the correlation between data points that are separated by three time periods: y1 and y4 for
example, and ρ12 would describe the correlation between data points that are separated by 12 times
periods: y1 and y13 for example. For monthly data in which we expect there to be some relationship
between months, as I do with my data, ρ12, ρ24, ρ36, and corresponding multiples would be of interest
because these values would indicate the relationship between the same months in different years. I
expected my sample autocorrelation function to exhibit spikes at these multiples. See Graph 3 above.
On my graph, I have indicated the multiples of 12 sample autocorrelations with a square. As you can
see, the data does not exhibit the regular peaks I expected. The spikes in the sample autocorrelation
function do not exhibit an obvious pattern.
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Although the sample autocorrelation function is not as I expected, it is obvious from the graph of the
data that some type of seasonality is occurring. In an attempt to remove this seasonality, I decided to
use method described in the text as an “ad hoc” method for removing seasonality. Using this method,
the time series is thought of as consisting for four components: the long-term trend, a seasonal
component, a long term cyclical component, and an irregular component. The goal is to create a new
series from the original series that is free from the seasonal component. This method uses averages to
create this new series: first to isolate the seasonal and irregular components and then further averaging
to remove the irregular component. After the seasonal component is isolated and adjusted, the original
series is divided by this seasonal index in an attempt to create a series free of the seasonal component.
My intermediate calculations for this method can be found on the tab: “Frmted Data-10 yrs-Seasonal
Adj”. The graphs of the seasonal indices, my seasonally adjusted series (with the original data), and its
autocorrelation function are shown below:
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Number of Weddings by Month Seasonally Adjusted: Years 1991-2000
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Sample Autocorrelation Function
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Although the seasonal indices provide information about the number of weddings in each month, the
series appears to be seasonally adjusted, and the sample autocorrelation function is closer to zero for
most values, I am not confident enough in my knowledge of this method or in my understanding of the
nature of my data to use the new series for my model.

Another method mentioned it the text for removing annual seasonality is considering a new series of
yt- y(t-12). However, after examining the sample autocorrelation function, my data series does not exhibit
a strictly annual seasonality. I don’t think the 12 month lagged series would be the best choice for
removing any seasonality that may be in the data. This method is shown in my spreadsheet for
completeness.

Based primarily on the sample autocorrelation which did not exhibit the annual seasonality I expected,
I decided to construct a model without removing any seasonality.

Model Construction

After performing various statistical tests and examining different properties of my data set, it appears it
may be more complex than a lower order process. However, I still attempted construction of a time
series model for my data. Based on the properties I had already examined, I made the following
conclusions:
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 Because the series has an oscillating sample autocorrelation function that does not go to zero,
this limits the possible models. Strictly moving average models are not a possibility because of
their limited memory. If the series was from a moving average model of order q, ρk would be
zero for all values greater than q. Because the sample autocorrelation function does not go to
zero, I eliminated strictly moving average models as a possibility.

 Similarly, I eliminated an autoregressive (AR) model of order 1 as a possible model. If this
were the correct model, I would expect the sample autocorrelation function to decline
geometrically to zero. Because the sample autocorrelation function is oscillating, I eliminated
this as a possibility.

 Although the model is likely more complex, for my project I decided to consider an AR(2)
model. I chose the AR(2) model because the autocorrelation function for autoregressive
processes of order greater than 1 are typically geometrically dampened, oscillating, sinusoidal
functions similar to the sample autocorrelation function of my series.

For the AR(2) model, I first estimated the parameters of my model using the Yule Walker Equations
and the conditions for stationarity. Because I assumed the process is autoregressive of order 2 and
calculated the sample autocorrelation function, I was able to use the Yule Walker equations to estimate
the autoregressive parameters 1 and 2. Solving the two algebraic equations gives two possibilities for
(1, 2): (0, 1) and (-0.32169231, -0.0171455). The conditions for stationarity require that 2 + 1 < 1,
2 - 1< 1, and 2< 1 which eliminates (0, 1) as a possibility for 1 and 2. However, (-0.32169231, -
0.0171455) satisfies each of these conditions. Using these parameter estimates, the sample mean of the
data, and the formula for the mean of an AR(2) process:  = /(1- 1 - 2), I calculated  to be
142,673.93. The resulting model is given by: yt = -0.32169231 yt-1 – 0.0171455yt-2 + 142,673.93 + t.
Although the Yule Walker equations provide reasonable estimates of the parameters, because the
model is purely autoregressive, the parameters of the model can be estimated more accurately by
ordinary least squares regression. Using ordinary least squares results in the following model: yt = -
0.327723301 yt-1 – 0.018809833 yt-2 + 145,323.4066 + t which is similar to the model produced by the
Yule Walker estimates. Notice the parameter estimates satisfy the conditions for stationarity shown
above. Also, using the formula for the mean of an AR(2) model,  = /(1- 1 - 2), gives  =
107,924.1223 which is close to the sample mean from our data of 106,565.51. A model that is
stationary with a mean close the sample mean are indications that the model may be a good fit for our
data. However, the R2 test statistic for this model is only 0.10423 which indicates that the model may
be a poor fit, which is more in line with my expectations of the model. Although there are additional
diagnostic tests that can be performed, as a final review of my model, I used the data from 2001 to
2003 to conduct an ex-post forecast. The graph below shows both the original data from 1991-2003
and the ex-post forecast from 2001 to 2003.
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Ex-Post Forecast with AR(2) Model
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Graph 9

As shown in the graph, although the model captures some of the oscillation in the model, overall, the
model does not provide a good fit.

Interpretations and Conclusions

After working with real data: the number of wedding per month, I have learned that working with time
series models and constructing a model that is a good fit is a complex process. The data I chose to
work with did not exhibit the characteristics that I expected and the model I constructed was not a good
fit for the data. However, I was able to utilize the techniques of the course to learn more about the
nature of my data. Ultimately, a different model than the one I constructed is needed to capture all of
the complexities of the data. One complexity of the model that I chose to not consider is that some
months contain five Saturdays and others four. This skews the number of weddings in those months
and is likely a contributing factor as to why my model was not a good fit. Although at the end of this
project my knowledge of wedding frequency by month has not increased, my times series knowledge
has increased. In order to construct a time series model appropriate for this data, techniques and
knowledge beyond what was presented in this introductory course would be needed.


