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This project will analyze the amount of Australian table wine sold on a monthly basis from 1983 to 1999.  Data from 1982 will be used for moving average calculations, and data from 2000 will be used for ex-post forecasts. The data was taken from: 


http://www.vcaa.vic.edu.au/vce/studies/mathematics/further/furmathapptask2.html
The original data can be found in the "Non-Seasonally Adjusted Data" tab.  The first step is to graph the data to get an idea how it is behaving.

[image: image1.emf]Total Table Wine Sold



0

5000

10000

15000

20000

25000

30000

35000

Jan.1982Jan.1983 Jan.1984Jan.1985Jan.1986Jan.1987Jan.1988 Jan.1989Jan.1990Jan.1991Jan.1992 Jan.1993Jan.1994Jan.1995Jan.1996Jan.1997 Jan.1998Jan.1999

Date



Amount of Wine Sold 

(1000L)


There is significant fluctuation in prices, with the largest peaks and troughs occurring every twelve months.  This indicates seasonality on a twelve month basis.  The graph of the sample autocorrelation coefficients confirms with, with spikes every twelve months.  

[image: image2.emf]Non-Seasonally Adjusted Correlogram
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It will be necessary to remove this seasonality before progressing with the analysis.  The process described in section 15.2.2 will be used.  A 12-month moving average will be computed for each data point, and the original data point will then be divided by this average.  Then an average of the values corresponding to the same month will be taken (e.g., all 17 data points for January will be averaged).  These averages are estimates of the seasonal indices.  It is interesting to note that the indices sum to almost exactly 12, indicating that there is no long-run trend in the data.  As a final step, each data point is divided by its corresponding seasonal index, removing the seasonal component of the series.  The relevant data can be found on the "Seasonally Adjusted Data."
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We can see that the majority of the fluctuations have been removed.  This indicates that we have effectively removed seasonality.  The graph of the sample autocorrelation coefficients is also smoothed and more easily interpreted. 

[image: image4.emf]Seasonally Adjusted Correlogram
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Though the autocorrelations go to zero as the lag becomes large, they do not decrease geometrically, suggesting that the original series may be nonstationary.  Also, we do not notice any drastic spikes, suggesting there are no moving average terms; additionally, the dampened sinusoidal shape suggests an autoregressive model of parameter 2. So, first and second differences will be taken and observed.  

We can also note here that according to Bartlett's Test with T=204 observations, if the series was generated by a white noise process, the sample autocorrelation coefficients will be normally distributed with standard deviation 1/sqrt(T) = 1/(204)^1/2 = .07.  Thus, since the first two coefficients are .485 and .328 (which are greater than 2(.07) = .14) we can be 95% certain that the series is NOT generated by a white noise process.  This is because for a white noise process, the sample autocorrelation coefficient is 0 for lags 1 or more.


Data for first differences can be found on the "First Differences" tab.

[image: image5.emf]First Difference Correlogram
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We can see that the correlogram shows that the autocorrelations still approach zero as the lag increases. Notice that the autocorrelations begin decaying immediately, suggesting that there are no Moving Average terms in the series. We do, however, see spikes in the autocorrelations every 1 or 2 lags, suggesting that an autoregressive model with parameter 1 or 2 might be appropriate.


Data for second differences can be found on the "Second Differences" tab.

[image: image6.emf]Second Difference Correlogram
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There does not appear to be a material change between the first and second difference Correlograms.  So we will utilize the first difference and attempt to model the series with AR(1) and AR(2) models.


Relevant data and calculations for AR(1) can be found on the "AR(1)" tab.
	Regression Statistics

	Multiple R
	0.50778573

	R Square
	0.257846348

	Adjusted R Square
	0.254116932

	Standard Error
	2299.592709

	Observations
	201


	 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept
	51.14069052
	162.2183407
	0.315258375
	0.75289583

	Lag 1
	-0.507888553
	0.061081305
	-8.314959072
	1.42696E-14


The coefficient for the first lag is nearly identical to the first sample autocorrelation coefficient, indicating that the model may be a good fit.  Though, the adjusted R square is quite low, suggesting that the fit is not all that great.  Additionally, with a D-W statistic of 2.485, we cannot accept the hypothesis that there is no serial correlation present.  In fact, this number suggests there is negative serial correlation is present in the regression.  This also counts against using the AR(1) model.

Relevant data and calculations for AR(2) can be found on the "AR(2)" tab.
	Regression Statistics

	Multiple R
	0.6562307

	R Square
	0.430638732

	Adjusted R Square
	0.424887608

	Standard Error
	2019.258462

	Observations
	201


	 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept
	80.7927399
	142.4942969
	0.566989288
	0.571363671

	Lag 1
	-0.75451219
	0.062361281
	-12.09904884
	1.37458E-25

	Lag 2
	-0.483683697
	0.062396541
	-7.751770981
	4.64701E-13


The adjusted R square has increased significantly for the AR(2) model, suggesting that it is a better fit than the AR(1) model.  Also, the t-stat for both coefficients are large enough that we can be confident at the 95% level that the true coefficients are not zero.

Both the Durbin-Watson and Box-Pierce Q Statistics were used to test the regression.  Both calculations followed the NEAS instructions located in the "Time Series Techniques" portion of the discussion forums.  The Durbin-Watson Statistic tests for serial correlation in the regression.  Serial correlation is, of course, undesirable, since it leads to an inaccurate estimation error variance of the series, and we would hope none is present.  Indeed, since the D-W Statistic is between 2 and 4-du =2.28, we can accept the null hypothesis that there is no serial correlation present.

Using a 10% confidence interval as a cutoff and noticing that for K=40 lags, Q=64.06 is higher than the critical value of 50.66, we reject the null hypothesis that the series was generated by a white noice process.  (This critical value arises because we use a chi-squared distribution with K-p-q = 40-2-0 = 38 degrees of freedom).  Thus, we can perform some ex-post forecasting to see how well this model predicts futures sales.


Relevant data and calculations for ex-post forecasts can be found on the "Ex-Post" tab.
AR(2) model: Yt = -.7535Yt-1 - .4837Yt-2 + 80.7927

It is interesting to note that conditions for stationarity are satisfied by these coefficients.  Specifically, (-.7535 + -.4837) < 1, (-.4837 - (-.7535)) <1, and .4837 <1.
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Sadly, the model does not seem to predict first differences very accurately.  Though, based on the considerations of R square, D-W and Q statistics, it is preferable to AR(1).  Further tests would do well to utilize the second differences to see if a better model can be created.

