ARIMA Modeling Conclusions Concerning Medical Inflation
NEAS – VEE Time Series Course Student Project

xxxxxxx xxxxxx
Medical costs have increased greatly in recent years and have been the subject of much debate.  As an actuarial analyst, I have input health care cost trend rates into various models and have seen what a large impact they can have on health insurance liabilities.  For my student project, I thought it would be advantageous to study medical costs in order to better understand their behavior.  I am using monthly medical cost data from the United States Bureau of Labor Statistics.  Specifically, I am using data from Series CUUR0000SAM, available from the BLS website, www.bls.gov/data.  This data is a city average and is not seasonally adjusted.  For monthly cost analysis, I am using data from the last 30 years, from January 1979 through December 2008.  For annual cost analysis, I am using data from the month of January for the years 1948 through 2008.


In order to make time series analysis possible, it is necessary to begin with a stationary series of data.  I began my analysis with monthly medical cost data.  Looking at a graph of the medical cost data makes it instantly clear that medical costs display an upward trend.  Although this data series is clearly not stationary, I can still apply time series techniques if it is found to be homogenous non-stationary, meaning that it can be transformed into a stationary series.  After some initial research, I discovered that price indexes have historically been found to grow exponentially.  In order to account for this I first turned the data on prices into data on inflation rates.  This can be done by taking natural logs of the data and then taking first differences or by taking natural logs of the ratio of each data point to the data point in the prior period.  I chose to use the latter approach.  I then took first differences of this series.  Graphing this series it appears to be stationary and an appropriate candidate for analysis.
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I calculated the sample autocorrelations for this data series, measuring the relationship between a data point and the data points surrounding it.  These are shown in the correlogram above.  It is obvious that there are spikes in the correlogram at regular intervals.  The first such spike occurs at a lag of 12.  This means that the data points are closely related to points from 12 months earlier.  Similar spikes occur at all multiples of 12.  There are also smaller, yet still significant jumps at 6 month intervals.  This is indicative of seasonal fluctuation which will need to be removed before further analysis.  To remove seasonal fluctuations, I first took an annual average for each period based on the 5 previous values and the 6 future values.  Dividing the original values by this average provided an estimate of the seasonal and irregular components of the time series.  Averaging these new values by month isolated the seasonal component.  I then weighted these values properly to make them sum to 12, giving me my final seasonal indices.  Dividing each point in my original data series by its corresponding seasonal index resulted in a seasonally adjusted data set.


I took my new seasonally adjusted data set and again took natural logs of the ratios between each data point and the point in the prior period.  I then took first differences as before to create a stationary data series.  The new sample autocorrelations are shown in the correlogram below.  The correlogram is now smooth with the annual spikes eliminated.  This demonstrates that my attempt to deseasonalize the data series was successful.
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It is also important to note that the absolute values of the sample autocorrelations quickly fall to zero in this manipulated series.  This is a sign that the series is indeed stationary.  If they remained far from zero, this would be problematic and it would be necessary to further manipulate the data to make it stationary.  Many series need to be differenced multiple times to become appropriate for analysis.  For this series, it was sufficient to take natural logs and second differences.  For this reason, we call 2 the series’ order of homogeneity.


I next directed my focus towards the annual medical cost data.  I manipulated this data in a similar fashion as the monthly data, taking natural logs of the ratio of each data point to its prior value, and then taking first differences of the result.  It was not necessary to eliminate annual fluctuations from this series because there was no monthly component differentiating the data points.  Below, I have provided a correlogram of the sample autocorrelations for the first differences of the inflation rates.
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In my initial study of this new data series I applied the Box-Pierce Q statistic.  This statistic is used to test whether or not the behavior of a series can be attributed to white noise.  This is an important consideration prior to beginning any analysis.  If all fluctuations in a data set are caused by white noise, an ARIMA model is not needed to explain any fluctuations.  Fortunately, this was not the case with my data series.  For a lag of 15, I calculated a Box-Pierce Q statistic of approximately 84.  This was found by multiplying the number of observations in the series by the sum of the squares of the first 15 autocorrelations.  For 15 lags and a 10% confidence level, I can reject the white noise hypothesis for any series with a Box-Pierce Q statistic higher than 21.  My calculation of 84 is clearly over this threshold and I can proceed with further analysis to try to explain what, if not white noise, can explain the behavior of the series.


I decided to test the significance of adding an autoregressive term to our model to explain the series’ behavior.  This means that each data point can be explained by a constant term, the value of the previous period, and a random error term.  I had Excel run a regression to calculate an equation which would best represent this relationship.  This resulted in a constant term of 0.00029 and a coefficient before the lagged term of negative 0.04630, giving us the equation below.

Yt = 0.00029 – 0.04630 * Yt-1
This negative coefficient before Yt-1 is to be expected given the oscillations in the correlogram.  By analyzing the residuals of this regression, found by subtracting the predicted values of the regression from the actual values, I can analyze how well the model fits the data and how accurately it can explain the behavior of the series.

I first tested the model using the Durbin Watson statistic.  Although the Durbin Watson statistic is not meant to be used for a lagged equation, it can still give us a partial indication of accuracy, especially when used in coordination with other tests, such as that involving the Box-Pierce Q statistic, which I will discuss shortly.  The Durbin Watson statistic is calculated as the sum of the squares of first differences in residuals divided by the sum of the squares of the residuals themselves.  The model has a Durbin Watson statistic of approximately 2.  This must be compared to the value in the Durbin Watson table corresponding to the number of independent variables and the number of observations used in the regression.  For a regression equation with 1 independent variable and 60 observations, this value is 1.55.  This is clearly below my calculated statistic.  This is evidence that serial correlation is not present.

After calculating the Durbin Watson statistic, I calculated the Box-Pierce Q statistic on the residuals.  This time I came up with very different results.  Again, with 15 lags and a 10% confidence level, the chi-squared distribution gives us a threshold of approximately 21.  If I calculate a Q statistic lower than this threshold, I fail to reject the hypothesis that the behavior of the series is attributable to white noise.  The Q statistic has now fallen to 0.014, far below the critical value.  If I can confidently say that the residuals are explained by white noise, the fluctuations in the series must be almost fully explained by the model.  I can now confidently say that the model is a good fit and accurately represents the behavior of the series.

Although it is nice that I have developed a relationship to explain the data series, it is still relatively useless unless it can be applied to forecast future values of the series.  I can modify the equation given earlier to create a suitable equation to forecast the next period.

Forecasted Yt+1 = 0.00029 – 0.04630 * Yt
This gives us a forecast of negative 0.000011974.  It is important to keep in mind that the data series being analyzed is the first differences of the natural log of the ratio of medical costs.  I must back into the forecast value of next year’s medical costs.  In the following equation, the variable X represents forecasted medical inflation, the natural log of the ratio of next year’s medical costs to this year’s medical costs.

X – 0.04816 = -0.000011974

Solving for X gives a medical inflation forecast of approximately 0.0482.  I can now use this value to solve for next year’s forecasted medical costs, which will be represented by the variable Z.

0.0482 = natural log ( Z / 360.459 )

Solving for Z in this equation gives a forecasted medical cost for January 2009 of 378.224.  The following scatter plot shows actual medical costs for years 1999 through 2008 as well as the forecasted value for 2009.  The final value, estimated from the autoregressive model, appears in line with expectations, giving us further evidence that our model is accurate.
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Although this model may be simplistic, given only one autoregressive term, I was pleased that it proved to be accurate and useful in forecasting future values of the series.  In a more detailed study, it would be interesting to include further autoregressive terms as well as introduce moving average terms to the model.  Yet even with only this simplistic model, I have developed a greater understanding of time series techniques as well as the behavior of medical inflation.  I believe time series analysis will now be a useful tool as I progress in my actuarial career.
Appendix: Explanation of Accompanying Excel Worksheets
The background work used for this project is available in two Excel files: “Monthly Analysis” and “Annual Analysis”.  Below is an outline detailing which steps were performed in each worksheet.
“Monthly Analysis”

Sheet 1: Data Manipulation

Sheet 2: Sample Autocorrelation Calculations before Seasonal Adjustment

Sheet 3: Seasonal Adjustment

Sheet 4: Sample Autocorrelation Calculations after Seasonal Adjustment

“Annual Analysis”

Sheet 1: Data Manipulation

Sheet 2: Sample Autocorrelation Calculations

Sheet 3: Box-Pierce Q Statistic Calculation (Initial)
Sheet 4: Data Used in Regression

Sheet 5: Regression Results

Sheet 6: Durbin Watson Statistic Calculation

Sheet 7: Box-Pierce Q Statistic Calculation (Residuals)
Sheet 8: Forecast of 2009
