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Time Series Analysis of Births from 1938 to 2004 in England & Wales
For the time series project I decided to look at number of births mainly because I thought the data would be readily available and reliable. I also was interested in seeing what kind of characteristics a time series model based on number of births might exhibit and whether or not I could develop an ARIMA model that could adequately model the series and produce meaningful forecasts for future births. The following are the key steps to develop a time series analysis:
· Specify the ARIMA model that best fits the sample data

· Estimate the model’s parameters
· Perform a diagnostic check to verify that the model and the parameters were specified correctly
· Forecast future data points and perform ex post forecasts on out-of-sample data

Model Specification

To begin the model specification, I obtained the monthly live birth
 data for the number of babies born from January 1938 to December 2004 in England and Wales.  I will exclude the 2004 data to use for an ex-post forecast after the model is developed. Fig. 1 below is the graph of the number of births in thousands by month. 
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Fig. 1 seems to show consistent oscillations and a slight downward trend which could imply the series has seasonality and is not stationary respectively. To determine whether or not the above assumptions are true we observe the sample autocorrelation to verify the characteristics. Fig. 2 is a plot of the sample autocorrelation function of this series.
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The sample autocorrelation function of this series confirms our suspicion that the series is not stationary, as it does not quickly drop to zero as the number of lags increase.  Another valuable piece of information within the graph is the clear presence of seasonality.  Spikes at months 12, 24, 36, etc. indicate annual seasonality of the number of births.  For this reason, we will take 12 month differences to eliminate the effect of seasonality on the series.  The following graph (Fig. 3) is the sample autocorrelation after taking 12 month differences:
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It appears that we have achieved our goal. The stationary characteristic is achieved as the sample autocorrelation function falls off to zero quickly and any seasonality appears to have been removed.  Now we should be able to specify the appropriate ARIMA model and begin estimating the parameters.

To specify the ARIMA model, we return to the sample autocorrelation function.  Looking at the values at lags 1, 2, 3, 4, etc. it appears as if the autocorrelation function is declining geometrically with each point being approximately 80% of the previous point.  This would suggest an autoregressive process.  Therefore we will develop ARIMA(1,1,0), ARIMA(2,1,0), ARIMA(3,1,0) to see which seems to fit best to the data.
Estimating Parameters

First, we will examine the series assuming only an autoregressive component.  Using linear regression techniques, we develop the following equations for each autoregressive model:

	Model
	Equation
	Adjusted R Square

	ARIMA(1,1,0)
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	ARIMA(2,1,0)
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	ARIMA(3,1,0)
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Next, looking at the adjusted R Square value for each model we notice it declines slightly as we add to the order of the autoregressive process.  Also, examining the p-values and t-statistics for each coefficient shows that for the 3rd order process, the p-values are high and the t-statistics are low, indicating low explanatory power of that additional variable.  Therefore we will focus our attention on the ARIMA(1,1,0) and ARIMA(2,1,0) models. 

Finally, a brief look at the Yule-Walker equations will also help us confirm the adequacy of each of the first and second order autoregressive models we have developed to this point.  For the first order process, the Yule-Walker equation breaks down into Φ = ρ1 we would hope to see that our sample autocorrelation, ρ1, would be close in value to Φ.   This is confirmed, as from our first equation, Φ=.8964 and from the excel worksheet, we see that ρ1 = .8964.  For the second order process, we will use the formulas
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Plugging in 
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 from equation 2 above results in ρ1 = .8965 and ρ2 = .8239.  These values are both close to our sample autocorrelation results.

Diagnostic Check
We will use the Durbin-Watson statistic to check for serial correlation. 

	Model
	D-W Statistic

	ARIMA(1,1,0)
	2.1853

	ARIMA(2,1,0)
	1.9862


Checking serial correlation with the Durbin-Watson statistic points to the ARIMA(2,1,0) model as being a better choice, as the statistic is right at 2.  The ARIMA(1,1,0) model is also close to 2, indicating that serial correlation is also not a problem.

 Ex-post Forecast:

Our last step in this project is to evaluate our data and see how well each of our models forecasts the data.  At the start of this project, we ignored the 12 months of data in 2004 for this purpose.  Now we are ready to produce a forecast and see how well it fits the actual data.
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Here is a look at the forecast including the actual data.  Both series seem to fit the actual data quite well. Due to the volume of data we will isolate the forecasted portion of the graph to get a better look.
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Conclusion:

The ARIMA (1,1,0) and the ARIMA (2,1,0) are almost identical and seem to model the actual data quite well so one would be relatively indifferent between the two. However, the models are not perfect. This may be due to a white noise process. We may get a better fit if we limit our data to 25 or 50 years instead of using all 67 years available. 

� Data from www.statistics.gov.uk/statbase
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