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Daily Average Temperature in Reykjavik, Iceland
Introduction and Data
I live in Minnesota.  As such, I am used to long, depressing, cold winters.  I therefore chose to do my student project on temperature data for Reykjavik, since winters are even drearier there and it might cheer me up.  Also, I recently flew through Reykjavik on the way to Copenhagen.  

I located daily average temperature data from January 1, 1995 through April 12, 2007 for Reykjavik on the web
.  These 4,485 data points form a stochastic time series with seasonality.  In this project, I seasonally adjusted the data and fit several ARIMA models to the adjusted data.  I then evaluated the models and chose the one with the best fit.  All calculations and plots were done using the R statistical software package, which is awesome.

Analysis
To start, I made a plot of the unadjusted data.  I also replaced a handful of missing observations with interpolated values.  All temperatures are reported in degrees Faranheit.
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Here are the raw autocorrelation functions.  The first graph shows one year of lags, the next shows 4000 days of lags (the x-axis in both graphs is in years).  Clearly, annual seasonality is present.
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To adjust for seasonality, I found the average temperature for each day of the year across the twelve year sample.  The results are plotted below.
[image: image3.emf]Standardized Residuals

Time

1996 1998 2000 2002 2004 2006

-4

-2

0

2

4

0.00 0.02 0.04 0.06 0.08 0.10

0.0

0.4

0.8

Lag

ACF

ACF of Residuals

5 10 15 20

0.0

0.4

0.8

p values for Ljung-Box statistic

lag

p value


I then subtracted the average temperature for the day from the original time series to deseasonalize the data.  The two components are shown in the graphs below.
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The deseasonalized data shows less seasonality.  On the other hand, it appears that the temperature variance may vary seasonally.  Adjusting for this is beyond the scope of this exercise, however.
As the deseasonalized data does not appear to have any trend, I did not apply further differencing or other transformations to the data.
I examined the ACF and PACF of the deseasonalized temperature data to determine if the data is a white noise process.  As can be seen in the graphs, the autocorrelation function starts out high and tails off to oscillate around zero.  This pattern suggests that an autoregressive model might be appropriate.  (Note that the horizontal axis in the graphs is in years; each graph shows the first fifty 1-day lags).
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Using R, I fit several ARMA models to the deseasonalized data.  Table 1 below lists the models that were considered, along with several goodness-of-fit measures.
Table 1: Models Considered
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The Aikake Information Criterion (AIC) is calculated as 
AIC = 2k – 2ln(L),
where k is the number of parameters in the model and L is the maximized value of the likelihood function.  Generally, one selects the model that minimizes AIC, which is supposed to be the model that does the best with the fewest parameters (parsimony).

Here, we can see that the MA(1) is the worst-performing model by this measure.  This makes sense, since we already expected an autoregressive process by examining the correlograms above.  The other four models are relatively close.  Adding more autoregressive terms appears to be improving the fit slightly, but not dramatically.  Adding a moving average component to get an ARMA(1,1)  also improves the fit some, but not a lot.

I have included additional diagnostic graphs in Appendix A below.  For each model, I graphed the standardized residuals, the ACF of the residuals, and the p-values for the Ljung-Box statistics for the first twenty lags.  The goal is to have the ACF look like a white noise process (equal to 1 at lag zero, but otherwise near zero) and to have the Ljung-Box statistics all close to zero (indicating no significant level of autocorrelation at these lags).

Based on the graphs, I would choose the AR(1) model.  It is the simplest model, and the others don’t add appreciable performance to it.  Moreover, the graphs for the other models suggest that we are actually introducing more autocorrelation in the residuals (see the Ljung-Box p-values in particular).
Conclusion
In this project, we have demonstrated simple techniques for deseasonalizing temperature data.  We have also successfully fit several time series models to the data and selected the most promising of them based on the Aikake Information Criterion.  
There are of course many more sophisticated ways to deseasonalize data and to fit time series models.  For example, R has the ability to fit LOESS models.  A LOESS model fits polynomials to local subsets of the data using weighted least squares regression.  Here are plots of the results of a LOESS analysis of the Reykjavik temperature data.  The plots show the raw data, then the seasonal and trend pieces, and finally the residuals at the bottom.
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Appendix A: Time series model diagnostics
For each model I considered, I have included plots of standardized residuals, ACF of residuals, and p-values for Ljung-Box statistics.

AR(1)
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AR(2)
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� Data was obtained from http://www.engr.udayton.edu/weather/.
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