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Modeling Firearm Homicides in Australia from 1914 to 2004

Purpose
The purpose of this project is to develop an ARIMA model for firearm homicides in Australia. I think it would be beneficial to find some sort of model for deaths by guns in order to perhaps predict the rates of homicides in future years. In addition, a similar analysis could be used to research whether gun legislation has had an affect on the rate of firearm homicides.
Data

I chose to examine the frequency of deaths by gunshot, and gathered data from the Time Series Data Library (http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/). The data gives the yearly rate of firearm homicide in Australia starting in 1915 to 2004. There are ninety observations. Below is a scatter plot of the raw data. All data analysis was done using a combination of two programs: Excel and Econometric Views. Please see the appendix for a summary of the data.
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At first glance, I noted that the rate of homicide does not trend up strictly, and it does not seem to trend down until perhaps the later years. Then I looked at the sample autocorrelations.
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These autocorrelations provide evidence that the series is stationary, since they decay quickly to zero. I also looked at the sample autocorrelations for the first and second differences, and these oscillated around zero, indicating that they are not stationary. Thus, I used the original data in my analysis and did not take any differences.

The autocorrelations also indicate a definite autoregressive component. My hypothesis is that the time series is stationary and can be modeled by an AR(1). The rate of gun deaths in a given year appears to depend on the rates in the previous years. A high rate one year implies a high rate the next year, and vice versa.
Modeling the Data
I used Econometric Views to fit the data to an autoregressive model. Fitting the data to an AR(1) model yielded the following equation:
yt = 0.482299 + 0.567563yt-1 + εt
	Variable
	Coefficient
	Std. Error
	t-Statistic
	Prob.

	C(1)
	0.482299
	0.030916
	15.60051
	0.0000

	AR(1)
	0.567563
	0.091932
	6.173718
	0.0000


The lower probability of each variable is a good indication that the data fits the model. Also, the standard error is low for the autoregressive and the constant coefficient and the t-statistics are high. The autoregressive coefficient definitely seems to be significant. 

I checked for serial correlation using the Durbin-Watson test. Based on the number of observations and the number of explanatory variables besides the constant, we can accept the null hypothesis that there is no serial correlation if the Durbin-Watson statistic is between 2 and 4-du=2.32. The DW statistic is 2.2353, so the model passes this test. The error terms from different years appear to be uncorrelated.
Next, I looked at the autocorrelations of the residuals:
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The autocorrelations seem to oscillate around zero, which supports the hypothesis that the data is autoregressive. The Box-Pierce Q statistic is 50.8743 for a total of k=36 lags. This is lower than the critical value of the Chi-squared Distribution at a 90% level of significance, so we can assume that the residuals are generated by a white noise process. They are not highly correlated. Below is the final graph of the fitted data and the residuals.
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Because the first sample autocorrelation was relatively high and then falls quickly, I wanted to see if the data might also have a moving average component. I fit the series to a ARMA(1,1) equation. These are my results:
yt = 0.46014 + 0.911293yt-1 -0.543311εt-1+ εt
	Variable
	Coefficient
	Std. Error
	t-Statistic
	Prob.

	C(1)
	0.460140
	0.072417
	6.354056
	0.0000

	AR(1)
	0.911293
	0.077258
	11.79539
	0.0000

	MA(1)
	-0.543311
	0.136910
	-3.96837
	0.0002


Based on the standard errors and t-statistics, this also appears to be a good model. The Durbin-Watson statistic is 1.9424, which is within the acceptable range from du=1.70 to 2. Here is the final graph of the fitted data and the residuals for the second model. There is no significant difference in the two fits. The residuals still appear to be randomly distributed about zero.
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To compare the two models, I looked at the Schwarz criterion, which was -4.1154 for the ARMA(1,1) model and -4.0772 for the AR(1) model. This criterion penalizes the models based on the number of variables used in the model. Thus, the fact that the ARMA(1,1) model has a smaller Schwarz criterion, even though it uses a greater number of right-hand-side variables, indicates that it is the better model.
Another comparison I used is the Q-statistic for both models. With k=36 lags, it is 50.8743 for the AR(1) model and 33.5643 for the ARMA(1,1) model. The lower Q-statistic indicates a higher probability that the residuals are white noise and are not correlated. Again, the ARMA(1,1) appears to be the better model for the data.
Model Implications
Based on my analysis, I can conclude that my hypothesis was incorrect. I argue that the rate of firearm homicide can be modeled by a ARMA(1,1) model: yt = 0.46014 + 0.911293yt-1 -0.543311εt-1+ εt. This implies that the rate of firearm homicide in a given year is dependent on the previous year’s rate and that the series has a moving average component as well. A model similar to this one might be used to forecast the rate of gun deaths in the upcoming years.

Appendix: Raw Data
Deaths from gun-related homicides and suicides and non-gun-related homicides and suicides. Australia: 1915-2004. Source: Neill and Leigh (2007).
	Year
	Rate of firearm suicide

	1915
	4.031636

	1916
	3.702076

	1917
	3.056176

	1918
	3.280707

	1919
	2.984728

	1920
	3.693712

	1921
	3.226317

	1922
	2.190349

	1923
	2.599515

	1924
	3.080288

	1925
	2.929672

	1926
	2.922548

	1927
	3.234943

	1928
	2.983081

	1929
	3.284389

	1930
	3.806511

	1931
	3.784579

	1932
	2.645654

	1933
	3.092081

	1934
	3.204859

	1935
	3.107225

	1936
	3.466909

	1937
	2.984404

	1938
	3.218072

	1939
	2.82731

	1940
	3.182049

	1941
	2.236319

	1942
	2.033218

	1943
	1.644804

	1944
	1.627971

	1945
	1.677559

	1946
	2.330828

	1947
	2.493615

	1948
	2.257172

	1949
	2.655517

	1950
	2.298655

	1951
	2.600402

	1952
	3.04523

	1953
	2.790583

	1954
	3.227052

	1955
	2.967479

	1956
	2.938817

	1957
	3.277961

	1958
	3.423985

	1959
	3.072646

	1960
	2.754253

	1961
	2.910431

	1962
	3.174369

	1963
	3.068387

	1964
	3.089543

	1965
	2.906654

	1966
	2.931161

	1967
	3.02566

	1968
	2.939551

	1969
	2.691019

	1970
	3.19812

	1971
	3.07639

	1972
	2.863873

	1973
	3.013802

	1974
	3.053364

	1975
	2.864753

	1976
	3.057062

	1977
	2.959365

	1978
	3.252258

	1979
	3.602988

	1980
	3.497704

	1981
	3.296867

	1982
	3.602417

	1983
	3.3001

	1984
	3.40193

	1985
	3.502591

	1986
	3.402348

	1987
	3.498551

	1988
	3.199823

	1989
	2.700064

	1990
	2.801034

	1991
	2.898628

	1992
	2.800854

	1993
	2.399942

	1994
	2.402724

	1995
	2.202331

	1996
	2.102594

	1997
	1.798293

	1998
	1.202484

	1999
	1.400201

	2000
	1.200832

	2001
	1.298083

	2002
	1.099742

	2003
	1.001377

	2004
	0.8361743


