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Time Series Final Project

Summer 2008


Introduction
When searching for a Time Series final project, topics involving birth or death rates interested me more than interest or other economic factors. I wanted to develop a unique project, so I looked for a narrower subject and decided to fit time series models to the number of deaths due to cancer. Since cancer is one of the deadliest diseases, I felt it important to analyze its growth in mortality, and, in recent years, its decline.
This project will deal with the number of deaths per 100,000 people due to cancer in the U.S. from 1960 to 2005. I obtained data from the following source: U.S. National Center for Health Statistics, National Vital Statistics Reports, Vol. 54, No. 19, June 28, 2006.
Ultimately, I will fit two models (ARIMA(1,1,0) and ARIMA(2,1,0)) to the data and determine if they fit well through statistical measures and ex-post analysis.

Model Specification

I begin by plotting the raw data below.
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The data indicate a steady increase until 1990, and then, for the most part, a steady decrease. This likely reflects recent medical improvements and increased awareness about the disease and its causes. Next, I will calculate and plot the autocorrelation function, which will help indicate how many times the series should be differenced in order to obtain a stationary series. (See “Original Data” tab)

A graph of the autocorrelation function for the original data is below.

[image: image2.png]1.0000

0.8000

0.6000

0.4000

0.2000

0.0000

-0.2000

-0.4000

-0.6000

Autocorrelation-Original Data

135739

3353739414345

131517 192123252729

Lag

——autocorrelation





We see a reasonably quick drop off to zero, and then the function appears to oscillate about zero. With a few more years of data, it might be easier to tell its exact shape, but I decided to take first differences and examine the new autocorrelation function to gain a better perspective. (See “1st Diff” tab)
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The first differences appear to form a stationary process, oscillating about zero. For fun, I also took second differences and again examined the autocorrelation function. (See “2nd Diff” Tab)
[image: image4.png]0.00150
0.00100
0.00050
0.00000
-0.00050
-0.00100
-0.00150
-0.00200

Autocorrelation-2nd Differences

—o—Autocorrelati...





The autocorrelations are near zero from the start and remain there throughout the series. I thought this may indicate a white noise process, so I decided to continue my analysis based on first differences. 
Using the above results, I will fit ARIMA(1,1,0) and ARIMA (2,1,0) models to the series.

Parameter Estimation and Diagnostic Checking

I used regression analysis to obtain the following two models and their respective statistics:
ARIMA (1,1,0)  (See Tab “ARIMA(1,1,0)”)

yt= -.0563 + .2388yt-1 + 
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	Regression Statistics

	Multiple R
	0.226667079

	R Square
	0.051377965

	Adjusted R Square
	0.028791726

	Standard Error
	2.026972256

	Observations
	44


ARIMA(2,1,0)  (See Tab “ARIMA(2,1,0)”)

yt= -.0527 + .0531yt-1 + .4917yt-2  + 
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	Regression Statistics

	Multiple R
	0.447292778

	R Square
	0.200070829

	Adjusted R Square
	0.160074371

	Standard Error
	1.907311204

	Observations
	43


Since 
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, both series are stationary. From the statistics (R Square and Adjusted R Square), the ARIMA(2,1,0) model appears to be a significantly better fit than the ARIMA(1,1,0) model. The mean of the ARIMA(1,1,0) model is 
-.07402, and the mean of the ARIMA(2,1,0) is -.11567. Again, the ARIMA(2,1,0) model appears to be a much better fit to the actual data, whose mean is -.11556. 
Next, I will examine the residuals of the two models to determine if they are indicative of a white noise process, using Durbin-Watson and Box-Pierce Q statistics. If so, the models are likely to be a good fit.

I obtained the following results (see each model’s tab):

	
	Durbin-Watson Stat
	Box-Pierce Q Stat (20 lags)

	ARIMA(1,1,0)
	1.401
	19.438

	ARIMA(2,1,0)
	1.909
	10.185


The Durbin-Watson (DW) statistic indicates that the ARIMA(1,1,0) residuals may have some serial correlation, and the ARIMA(2,1,0) residuals almost definitely do not since the DW Stat is close to 2. The critical value for the Q statistic with a 10% confidence level and 20 – 1 – 0 = 19 degrees of freedom is 27.2. Since both models have a Box-Pierce statistic under this level, we can not reject the hypothesis that the residuals in each model form a white noise process.
Model Evaluation

I will now test each model’s ability to forecast future values by testing each against known data points. A graphical representation is below.
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Neither model is a perfect predictor, but both seem to stay fairly close to the actual values. The value in 2005 seems to be somewhat of an outlier which may affect the results slightly.

Conclusion
Analyzing the number of deaths due to cancer is an interesting topic because it indicates both the growth of the disease and its decline due to medical enhancements, treatments and possibly even lifestyle changes. The ARIMA(2,1,0) model seems to be a better fit than the ARIMA(1,1,0) model, although neither produces an ideal-fitting forecast. In order to gain a more reliable picture of the data and forecasted values, more complex models may need to be employed.
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