ARIMA Modeling of Monthly Contract Rates on 30-Year, Fixed-Rate 

Conventional Home Mortgage Commitments

Introduction

For this NEAS Time Series student project, we attempt to fit the most correctly specified ARIMA model to the time series formed by 36 years of monthly contract rates on 30-year, fixed-rate conventional home mortgage commitments in the United States from 1972 to 2007.  Using goodness-of-fit analysis outlined in the Econometric Models text, we will show that the time series is first-order homogeneous non-stationary and that, of the six models considered (IMA(1,1,0), ARIMA(1,1,1), ARI(1,1,0), ARI(2,1,0), ARI(3,1,0) and ARI(4,1,0)), the time series is most accurately modeled by an integrated autoregressive process of order (4,1,0).

Data

Data for this project were obtained from the Data Download Program of the Federal Reserve Board at the website http://www.federalreserveboard/datadownload/.  The time series represents the monthly contract rates on 30-year, fixed-rate conventional home mortgage commitments from April 1971 through November 2008.  In order to analyze autoregressive models with lagged terms and to perform ex-post forecasts for each model, all model selection and analysis utilized the 432 monthly rates for the 36-year span beginning in January 1972 and ending in December 2007.  Upon inspection, no data were missing from the given series.

Analysis of Original Time Series

Before models for the given time series can be selected and tested, we must first determine whether or not the original series is stationary or homogeneous non-stationary, and is neither a random walk nor a white noise process.  A graph of the original time series is given below:
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By visual inspection alone, the time series does not appear to be a good candidate for stationarity.  From a beginning rate of 7.44% in January of 1972, the series surpasses 10% in the latter half of the decade on its way to a peak of 16.33% in April 1980.  This is followed by a 414-basis point drop in mortgage rates over a three-month span before ascending to a maximum rate of 18.45% in October 1981.  This is followed by a (relatively) rapid descent into single-digit rates by the end of 1986 and a steady decline with markedly less volatility over the following two decades.

The correlogram of the original series is shown below along with sample autocorrelation values for the first 10 lags:
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	Sample autocorrelations for first 10 lags of original time series

	Lag
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	Rhok
	0.9920
	0.9790
	0.9673
	0.9571
	0.9464
	0.9349
	0.9238
	0.9127
	0.9010
	0.8883


The sample autocorrelations do not descend rapidly to zero nor do they descend with a pattern of geometric decay.  Thus, both the graph and the table confirm that the original time series is not stationary.  It is interesting to note that the sample autocorrelation function for our time series of mortgage rates behaves in a similar fashion to the sample autocorrelation function for three-month Treasury bills modeled in Example 16.1 of the Econometric Models text – that is, both functions decline steadily, but slowly from 1 to 0.  The authors’ observation of the three-month Treasury bill series holds in our case as well.  Because the sample autocorrelation function does decline eventually, we suspect that the mortgage rate time series has been generated by a homogeneous non-stationary process.

Analysis of Series of First Differences

In order to test for homogeneity, we take first differences of the original time series, thereby defining a new time series that gives the monthly change in the contract rates on 30-year, fixed-rate conventional home mortgage commitments.  The graph of first differences is shown below:
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Although the shape of the graph reflects the large fluctuation in rates during the early 1980’s, the series appears to have a constant mean near zero with no long-run trends of increasing or decreasing values.  In order to confirm homogeneity, we again examine the sample autocorrelation function and its values for lags 1-10.

[image: image4.emf]Sample Autocorrelations for Monthly Change in 30-Year Fixed Mortgage Rates, 1972-2007
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	Sample autocorrelations for first 10 lags of first differences

	Lag
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	Rhok
	0.4217
	-0.1040
	-0.1192
	0.0586
	0.0786
	-0.0333
	-0.0383
	0.0434
	0.0849
	0.0674


This sample autocorrelation function exhibits the necessary signs of a stationary series.  The sample autocorrelation values descend rapidly to zero and fluctuate above and below zero within a range of (generally) -0.1 to 0.1.  If all of the true autocorrelation coefficients were zero, then we would accept the hypothesis that the time series of first differences was generated by a white noise process and that the original series was generated by a random walk.  The Box-Pierce statistic defined as Equation 16.25 on page 496 shows, however, that this is not the case.  For 10 lags, the Q test statistic is 98.77 while the critical 1-percent value is 23.21.  Thus, we reject the hypothesis that all autocorrelation coefficients are equal to zero, and thus, are more than 99 percent certain that the original time series was not generated by a random walk.

Model Selection

Now that we have determined that our time series for mortgage rates is a first-order homogeneous non-stationary time series, we can advance to the process of model specification.  We return to the sample autocorrelation function of the differenced time series in order to gain insight into the types of models that may explain the data in the most accurate manner.

If the time series of first differences has been generated by a moving average process of order 1, designated as IMA(0,1,1), then all autocorrelation coefficients after the first lag should be equal to zero.  (This is because the IMA(0,1,1) process has a memory of only one period by definition.)  Certainly the sample autocorrelation coefficient is greater than zero for lag 1, but what about after that?  According to the result obtained by Bartlett referenced on page 496 of the text, we reject (with 95 percent certainty) the hypothesis that a sample autocorrelation coefficient is equal to zero if it is greater than two standard deviations in magnitude, in this case 2*(1/square root(432 observations)) = .0962.  From the table above, the sample autocorrelation coefficients are larger than two standard deviations for lags 1-3 and smaller for lags 4-10.  If the differenced time series has a moving average component, it should probably be modeled by a moving average process of order 2 or 3 (the pure moving average models would be IMA(0,1,2) and IMA(0,1,3)).

The mathematics for deriving the coefficients for the IMA(0,1,2) and IMA(0,1,3) cases, however, are beyond the scope of this course and these models will not be developed further in this project.  Because the process for estimating the IMA(0,1,1) model is mathematically straightforward, we will fit the differenced time series to such a model, if for no other reason than to gain further proof that it does not provide the best fit.

If the time series of the first differences has been generated by an autoregressive process of order 1, designated as ARI(1,1,0), then we would expect the sample autocorrelation function to resemble the geometrically declining graph in Figure 17.5 on page 529 of the text.  Clearly, this is not the case.  The graph above more closely resembles that of the oscillating ARI(2,1,0) sample autocorrelation function show in Figure 17.7 on page 532, suggesting that our differenced time series may be described by this process.  Because computation of the coefficients of an autoregressive process of any order can be done easily with Excel, we will analyze processes of increasing order until determining that a higher order model is no more statistically significant that the prior model.

A third possibility for our differenced time series is that it can best be described by a mixed autoregressive-moving average process.  Due to the complexity of the mathematics, we will only consider the ARIMA(1,1,1) case.  Figure 17.10 on page 536 shows a realization for the sample autocorrelation function that resembles (to a certain degree) our oscillating sample autocorrelation function shown above.

Thus we will specify and analyze models of the following types: IMA(0,1,1), ARIMA(1,1,1) and  ARI(p,1,0), where p is any order that adds statistical significance from the prior model of order p-1.

Model Specification and Analysis

IMA(0,1,1)

The equation for this process is

wt = mu + et – theta1*et-1
where wt = yt – yt-1 (the one-month change in the original time series) and mu is the arithmetic mean of the series.  In order to approximate theta1, we set the autocorrelation function given by Equation 17.7 equal to the sample autocorrelation coefficient of lag 1 and solve the resulting quadratic equation for theta1.  Letting rho1 equal 0.4217, theta1 is found to equal -0.5485.  (Note: Calculations are done on the tab entitled “IMA(0,1,1) – 72-07” of the attached Excel workbook.)  Given an arithmetic mean calculated as -0.00003194, our IMA(0,1,1) process is described by the following equation:

wt = -0.00003194 + et + 0.5485*et-1

The residuals generated by this equation are shown on the “IMA(0,1,1) – 72-07” tab of the Excel workbook along with the calculation of the R2 statistic and the Durbin-Watson statistic.  The Box-Pierce statistics for varying numbers of lags are calculated in the tab entitled “IMA(0,1,1) – Box-Pierce.”  These statistics are summarized in the table below:

	IMA(0,1,1) Model

D-W Statistic = 1.9035; R2 = 0.2313

	Lag
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11

	Degrees of Freedom
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	Box-Pierce Statistics
	3.36
	10.65
	14.00
	15.87
	16.97
	17.32
	17.57
	20.27
	20.28
	23.91

	Critical Value
	3.84
	5.99
	7.81
	9.49
	11.07
	12.59
	14.07
	15.51
	16.92
	18.31

	Outcome
	Do Not Reject
	Reject
	Reject
	Reject
	Reject
	Reject
	Reject
	Reject
	Reject
	Reject


The Durbin-Watson statistic tests for serial correlation among the residuals.  Because serial correlation causes the error in a given period to carry forward into future periods, a model with no serial correlation can be assumed to have a better fit.  For the IMA(0,1,1) model, the Durbin-Watson statistic is 1.90, which is close enough to 2 that we can accept the null hypothesis of no serial correlation among the residuals.  Table 6.1 on page 165 sets the range of the Durbin-Watson statistic and Table 5 on page 610 shows the upper and lower limits given a number of explanatory variables and observations.  For our model, a Durbin-Watson statistic less than 1.70 would be required to assume that positive serial correlation was present.

For the IMA(0,1,1) model, the R2 statistic is 0.2313, which, from the Regression Analysis course, tells us that 23.13% of the total variance in the wt term (the one-month change in mortgage rates) is explained by the model itself, while random fluctuations account for the remainder of the model’s variance.  The R2 statistic has little value in and of itself, but will be helpful when compared to the R2 statistics of other model.

As defined on page 555, the Box-Pierce statistic tests whether or not the residual autocorrelations of the model are themselves uncorrelated.  If correlation is present, then we assume that the model is not correctly specified.  For two degrees of freedom and beyond for the IMA(0,1,1) model, the Box-Pierce statistic is larger than the critical value at the 95 percent significance level.  Therefore, we conclude that the residual autocorrelations are themselves correlated and that the model is most likely not specified properly as an IMA(0,1,1) process.  This agrees with our conclusion from the previous section that an IMA(0,1,2) or IMA(0,1,3) model would be a better fit, if the differenced time series can be explained by a moving-average process.

ARIMA(1,1,1)

The equation for this process is

wt = phi1*wt-1 + delta + et – theta1*et-1
where wt = yt – yt-1 and delta = mu*(1 – phi1) with mu equal to the arithmetic mean of the series.  In order to approximate phi1 and theta1, we set the autocorrelation functions given by Equations 17.58 and 17.59 equal to the sample autocorrelation coefficients of lags 1 and 2, and solve the resulting system of two equations.  Letting rho1 equal 0.4217 and rho2 equal -0.1040, phi1 is found to equal -0.2466 and theta1 is found to equal -0.5718.  (Note: Calculations are done on the tab entitled “ARIMA(1,1,1) – 72-07” of the attached Excel workbook.)  Given an arithmetic mean calculated as -0.00003194, delta is equal to -0.00003982, and our ARIMA(1,1,1) process is described by the following equation:

wt = -0.2466*wt-1 – 0.00003982 + et + 0.5718*et-1

The residuals generated by this equation are shown on the “ARIMA(1,1,1) – 72-07” tab of the Excel workbook along with the calculation of the R2 statistic and the Durbin-Watson statistic.  The Box-Pierce statistics for varying numbers of lags are calculated in the tab entitled “ARIMA(1,1,1) – Box-Pierce.”  These statistics are summarized in the table below:

	ARIMA(1,1,1) Model

D-W Statistic = 1.5179; R2 = 0.0897

	Lag
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

	Degrees of Freedom
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	Box-Pierce Statistics
	35.04
	37.39
	39.56
	40.26
	40.74
	41.22
	44.19
	44.67
	46.94
	48.49

	Critical Value
	3.84
	5.99
	7.81
	9.49
	11.07
	12.59
	14.07
	15.51
	16.92
	18.31

	Outcome
	Reject
	Reject
	Reject
	Reject
	Reject
	Reject
	Reject
	Reject
	Reject
	Reject


The Durbin-Watson statistic of 1.52 is small enough to allow us to reject the null hypothesis that no serial correlation exists among the residuals.  In this case, we can assume that positive correlation is present.  By adding one autoregressive term, our R2 statistic declines nearly three-fold, from 0.2313 for the IMA(0,1,1) model to 0.0897.  Only 8.97% of the variance wt is explained by the model itself.  Finally, the Box-Pierce statistics for 1 through 10 degrees of freedom are resoundingly conclusive that the residual autocorrelations are themselves correlated.  From all the statistical evidence, we can conclude that the model is not correctly specified as an ARIMA(1,1,1) process.  

ARI(1,1,0)

(Note: The Regression Analysis Tool from the Data Analysis ToolPak of Microsoft Excel was used for all regression calculations in regards to the purely autoregressive models shown below.)

The equation for this process is

wt = phi1*wt-1 + delta + et
where wt = yt – yt-1 and delta = mu*(1 – phi1) with mu equal to the arithmetic mean of the series.  In order to obtain approximations for phi1 and delta, we regress the dependent variable wt on the independent variable wt-1 using the concepts of regression analysis.  Using the Regression Analysis Tool in Excel, the values are given below:

	ARI(1,1,0) Regression Statistics
	
	
	

	Multiple R
	0.421763987
	
	
	

	R2
	0.177884861
	
	
	

	Adjusted R2
	0.175972965
	
	
	

	Standard Error
	0.002778813
	
	
	

	Observations
	432
	
	
	

	
	
	
	
	

	 ARI(1,1,0)
	Coefficients
	Standard Error
	t Stat
	P-value

	Delta
	-1.88608E-05
	0.000133703
	-0.141065531
	0.887884234

	Phi1
	0.421800271
	0.043728991
	9.645781036
	4.63313E-20


Thus the equation for the ARI(1,1,0) process is given by

wt = 0.4218*wt-1 – 0.00001886 + et

The residuals generated by this equation are shown on the “ARI(1,1,0) – 72-07” tab of the Excel workbook along with the calculation of the Durbin-Watson statistic.  The Box-Pierce statistics for varying numbers of lags are calculated in the tab entitled “ARI(1,1,0) – Box-Pierce.”  These statistics are summarized in the table below:

	ARI(1,1,0) Model

D-W Statistic = 1.7111; R2 = 0.1779

	Lag
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11

	Degrees of Freedom
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	Box-Pierce Statistics
	48.92
	58.32
	63.08
	67.39
	69.39
	70.98
	71.61
	73.42
	73.71
	75.31

	Critical Value
	3.84
	5.99
	7.81
	9.49
	11.07
	12.59
	14.07
	15.51
	16.92
	18.31

	Outcome
	Reject
	Reject
	Reject
	Reject
	Reject
	Reject
	Reject
	Reject
	Reject
	Reject


The Durbin-Watson statistic of 1.71 is close to the upper and lower limits for a model with 432 observations, thus we can conclude that, at best, the test is indeterminate and that we can draw no definitive conclusion regarding serial correlation among the residuals.  The R2 statistic is 0.1779, which is almost exactly in between those given for the IMA(0,1,1) and the ARIMA(1,1,1) models.  Until we can compare it with that of higher order autoregressive models, however, it offers no information regarding the fit of the model in this particular case.  Finally, the Box-Pierce statistics for 1 through 10 degrees of freedom are resoundingly conclusive that the residual autocorrelations are themselves correlated.  From all the statistical evidence, we can conclude that the model is not correctly specified as an ARI(1,1,0) process.  This agrees with our visual inspection in the prior section, specifically the fact that the sample autocorrelation function for our differenced time series did not decline geometrically to zero as would be expected of an ARI(1,1,0) process.

ARI(2,1,0)

We now regress the current period’s monthly change in mortgage rates on the monthly change in each of the prior two periods.  The equation for this process is

wt = phi1*wt-1 + phi2*wt-2 + delta + et
where wt = yt – yt-1 and delta = mu*(1 – phi1 – phi2) with mu equal to the arithmetic mean of the series.  In order to obtain approximations for phi1, phi2 and delta, we use the Regression Analysis Tool in Excel.  The values are given below:

	ARI(2,1,0) Regression Statistics
	
	
	

	Multiple R
	0.523750203
	
	
	

	R2
	0.274314275
	
	
	

	Adjusted R2
	0.270931125
	
	
	

	Standard Error
	0.002613803
	
	
	

	Observations
	432
	
	
	

	
	
	
	
	

	 ARI(2,1,0)
	Coefficients
	Standard Error
	t Stat
	P-value

	Delta
	-2.42945E-05
	0.000125765
	-0.193173804
	0.846914276

	Phi1
	0.566191398
	0.045360754
	12.48196616
	1.02103E-30

	Phi2
	-0.342576455
	0.045373093
	-7.550211572
	2.63669E-13


Thus the equation for the ARI(2,1,0) process is given by

wt = 0.5662*wt-1 – 0.3426*wt-2 – 0.00002429 + et

The residuals generated by this equation are shown on the “ARI(2,1,0) – 72-07” tab of the Excel workbook along with the calculation of the Durbin-Watson statistic.  The Box-Pierce statistics for varying numbers of lags are calculated in the tab entitled “ARI(2,1,0) – Box-Pierce.”  These statistics are summarized in the table below:

	ARI(2,1,0) Model

D-W Statistic = 1.9205; R2 = 0.2743

	Lag
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

	Degrees of Freedom
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	Box-Pierce Statistics
	1.88
	5.69
	6.98
	8.54
	8.58
	9.82
	11.34
	11.37
	15.71
	18.71

	Critical Value
	3.84
	5.99
	7.81
	9.49
	11.07
	12.59
	14.07
	15.51
	16.92
	18.31

	Outcome
	Do Not Reject
	Do Not Reject
	Do Not Reject
	Do Not Reject
	Do Not Reject
	Do Not Reject
	Do Not Reject
	Do Not Reject
	Do Not Reject
	Reject


The Durbin-Watson statistic of 1.92 is closer to 2 than in our three prior models and we can conclude that there is no serial correlation among the residuals.  The R2 statistic increases from 0.1779 in the ARI(1,1,0) model to 0.2743, which tells us that the ARI(2,1,0) is a better fit.  Finally, for the first time in our comparison, the Box-Pierce statistics for 1 through 9 degrees of freedom suggest that the residual autocorrelations are not themselves correlated.  (Note: Although it is not shown in the table above, the Box-Pierce statistic for 10 degrees of freedom is the only instance in which the null hypothesis of no correlation is rejected when calculated for 10 degrees of freedom and greater).  From all the statistical evidence, we conclude that the model may be correctly specified as an ARI(2,1,0) process.  This agrees with our visual inspection in the prior section, specifically the fact that the sample autocorrelation function for our differenced time series oscillates after declining quickly to zero, as would be expected of an ARI(2,1,0) process.

ARI(3,1,0)

We now regress the current period’s monthly change in mortgage rates on the monthly change in each of the prior three periods.  The equation for this process is

wt = phi1*wt-1 + phi2*wt-2 + phi3*wt-3 + delta + et
where wt = yt – yt-1 and delta = mu*(1 – phi1 – phi2 – phi3) with mu equal to the arithmetic mean of the series.  In order to obtain approximations for phi1, phi2, phi3 and delta, we use the Regression Analysis Tool in Excel.  The values are given below:

	ARI(3,1,0) Regression Statistics
	
	
	

	Multiple R
	0.533006411
	
	
	

	R2
	0.284095834
	
	
	

	Adjusted R2
	0.279077814
	
	
	

	Standard Error
	0.002599159
	
	
	

	Observations
	432
	
	
	

	
	
	
	
	

	 ARI(3,1,0)
	Coefficients
	Standard Error
	t Stat
	P-value

	Delta
	-2.14424E-05
	0.000125066
	-0.171448526
	0.86395213

	Phi1
	0.605942889
	0.048008556
	12.62156028
	2.87699E-31

	Phi2
	-0.408330601
	0.052678858
	-7.751318432
	6.68723E-14

	Phi3
	0.116135909
	0.048025076
	2.418234802
	0.016012546


Thus the equation for the ARI(3,1,0) process is given by

wt = 0.6059*wt-1 – 0.4083*wt-2 + 0.1161*wt-3 – 0.00002144 + et

The residuals generated by this equation are shown on the “ARI(3,1,0) – 72-07” tab of the Excel workbook along with the calculation of the Durbin-Watson statistic.  The Box-Pierce statistics for varying numbers of lags are calculated in the tab entitled “ARI(3,1,0) – Box-Pierce.”  These statistics are summarized in the table below:

	ARI(3,1,0) Model

D-W Statistic = 2.0129; R2 = 0.2841

	Lag
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13

	Degrees of Freedom
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	Box-Pierce Statistics
	0.69
	1.47
	2.49
	2.51
	3.11
	4.96
	5.03
	10.54
	14.23
	14.37

	Critical Value
	3.84
	5.99
	7.81
	9.49
	11.07
	12.59
	14.07
	15.51
	16.92
	18.31

	Outcome
	Do Not Reject
	Do Not Reject
	Do Not Reject
	Do Not Reject
	Do Not Reject
	Do Not Reject
	Do Not Reject
	Do Not Reject
	Do Not Reject
	Do Not Reject


The Durbin-Watson statistic of 2.01 is closer to 2 than in our four prior models and we can conclude that there is no serial correlation among the residuals.  The R2 statistic increases to 0.2841 and the Adjusted R2 statistic is also higher than in the ARI(2,1,0) model (0.2791 vs. 0.2743), which, as is known from regression analysis theory, tells us that the ARI(3,1,0) is a better fit.  The t-statistic for the phi3 coefficient is much lower than those for phi1 and phi2, but is still greater in magnitude than 1, which is a rule of thumb for statistical significance.  The Box-Pierce statistics for the ARI(3,1,0) case for all lags shown suggest that the residual autocorrelations are not themselves correlated.  Therefore, from all the statistical evidence, we conclude that the model is more correctly specified as an ARI(3,1,0) process than any other process that we have observed so far.

ARI(4,1,0)

Because the R2 and Adjusted R2 have continued to increase for each of the first three moving-average models, we will continue to examine higher order models until this is no longer the case.  We now regress the current period’s monthly change in mortgage rates on the monthly change in each of the prior four periods.  The equation for this process is

wt = phi1*wt-1 + phi2*wt-2 + phi3*wt-3 + phi4*wt-4 + delta + et
where wt = yt – yt-1 and delta = mu*(1 – phi1 – phi2 – phi3 – phi4) with mu equal to the arithmetic mean of the series.  In order to obtain approximations for phi1, phi2, phi3, phi4 and delta, we use the Regression Analysis Tool in Excel.  The values are given below:

	ARI(4,1,0) Regression Statistics
	
	
	

	Multiple R
	0.535055975
	
	
	

	R2
	0.286284897
	
	
	

	Adjusted R2
	0.279599041
	
	
	

	Standard Error
	0.002598219
	
	
	

	Observations
	432
	
	
	

	
	
	
	
	

	ARI(4,1,0)
	Coefficients
	Standard Error
	T Stat
	P-value

	Delta
	-2.05559E-05
	0.000125023
	-0.164416369
	0.869481179

	Phi1
	0.599521792
	0.048318079
	12.40781518
	2.10956E-30

	Phi2
	-0.38567307
	0.05625865
	-6.855355876
	2.50062E-11

	Phi3
	0.08255577
	0.056264924
	1.467268856
	0.143039069

	Phi4
	0.05537187
	0.048384761
	1.144407228
	0.253095883


Thus the equation for the ARI(4,1,0) process is given by

wt = 0.5995*wt-1 – 0.3857*wt-2 + 0.0826*wt-3 + 0.0554*wt-4 – 0.00002056 + et

The residuals generated by this equation are shown on the “ARI(4,1,0) – 72-07” tab of the Excel workbook along with the calculation of the Durbin-Watson statistic.  The Box-Pierce statistics for varying numbers of lags are calculated in the tab entitled “ARI(4,1,0) – Box-Pierce.”  These statistics are summarized in the table below:

	ARI(4,1,0) Model

D-W Statistic = 1.9973; R2 = 0.2863

	Lag
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14

	Degrees of Freedom
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	Box-Pierce Statistics
	0.15
	1.44
	1.44
	2.35
	3.75
	3.78
	9.63
	13.20
	13.24
	13.49

	Critical Value
	3.84
	5.99
	7.81
	9.49
	11.07
	12.59
	14.07
	15.51
	16.92
	18.31

	Outcome
	Do Not Reject
	Do Not Reject
	Do Not Reject
	Do Not Reject
	Do Not Reject
	Do Not Reject
	Do Not Reject
	Do Not Reject
	Do Not Reject
	Do Not Reject


The Durbin-Watson statistic rounds to exactly 2.00 and we can conclude that there is no serial correlation among the residuals.  The R2 statistic increases to 0.2863 and the Adjusted R2 statistic is also higher than in the ARI(3,1,0) model (0.2796 vs. 0.2791), which tells us that the ARI(4,1,0) is a slightly better fit.  The t-statistic for the phi3 and phi4 coefficient is much lower than those for phi1 and phi2, but both are still greater in magnitude than 1.  Taken in combination with the Adjusted R2 statistic, we see that a four-month lagged independent variable adds a small amount of statistical significance to the model.  Similar to the prior two autoregressive models, the Box-Pierce statistics for the ARI(4,1,0) case for all lags shown suggest that the residual autocorrelations are not themselves correlated.  Therefore, from all the statistical evidence, we conclude that the model is more correctly specified as an ARI(4,1,0) process than any other process that we have observed so far.

ARI(5,1,0)

Again, we will continue to examine higher order models until the R2 and Adjusted R2 no longer increase from the prior model.  We regress the current period’s monthly change in mortgage rates on the monthly change in each of the prior five periods.  The equation for this process is

wt = phi1*wt-1 + phi2*wt-2 + phi3*wt-3 + phi4*wt-4 + phi5*wt-5 + delta + et
where wt = yt – yt-1 and delta = mu*(1 – phi1 – phi2 – phi3 – phi4 – phi5) with mu equal to the arithmetic mean of the series.  In order to obtain approximations for phi1, phi2, phi3, phi4, phi5 and delta, we use the Regression Analysis Tool in Excel.  The values are given below:

	ARI(5,1,0) Regression Statistics
	
	
	

	Multiple R
	0.535457782
	
	
	

	R2
	0.286715036
	
	
	

	Adjusted R2
	0.278343147
	
	
	

	Standard Error
	0.002600483
	
	
	

	Observations
	432
	
	
	

	
	
	
	
	

	 ARI(5,1,0)
	Coefficients
	Standard Error
	t Stat
	P-value

	Delta
	-2.08698E-05
	0.000125134
	-0.166779698
	0.867622527

	Phi1
	0.600875582
	0.048433883
	12.40609976
	2.19023E-30

	Phi2
	-0.383645817
	0.056449546
	-6.796260465
	3.63412E-11

	Phi3
	0.073048562
	0.059355748
	1.230690624
	0.21911768

	Phi4
	0.070121486
	0.056497921
	1.241133909
	0.215239289

	Phi5
	-0.024578886
	0.048493599
	-0.506848057
	0.612523677


For the first time in our examination of autoregressive models, the Adjusted R2 decreases (from 0.2796 to 0.2783) and the coefficient of the newly added independent variable, phi5, has a t-statistics that is less than 1 in magnitude.  Both statistics tell us that an ARI(5,1,0) model does not add any more statistically significant information to what is already known from the ARI(4,1,0) process.  Therefore, we do not calculate the Box-Pierce or Durbin-Watson statistics and we will not continue to model higher order autoregressive processes.
Forecasting

As a final method of analyzing the goodness-of-fit of the ARIMA models considered above, an ex-post forecast using the equations and techniques of Chapter 18 was performed for the first six months of 2008 and compared with the actual data.  The calculations of the forecasted rates and error sums of squares are given on each model-specific tab in the attached Excel spreadsheet.  The table below shows the actual and forecasted interest rates, along with an error sum of squares term for each model:

	Comparison of ex-post forecasting for January 2008 through June 2008

	Month
	Actual
	IMA(0,1,1)
	ARIMA(1,1,1)
	ARI(1,1,0)
	ARI(2,1,0)
	ARI(3,1,0)
	ARI(4,1,0)

	2008-01
	5.760%
	6.104%
	6.104%
	6.052%
	6.094%
	6.101%
	6.087%

	2008-02
	5.920%
	6.101%
	6.099%
	6.029%
	6.125%
	6.124%
	6.106%

	2008-03
	5.970%
	6.098%
	6.096%
	6.018%
	6.143%
	6.123%
	6.101%

	2008-04
	5.920%
	6.095%
	6.093%
	6.012%
	6.140%
	6.111%
	6.082%

	2008-05
	6.040%
	6.091%
	6.090%
	6.007%
	6.129%
	6.104%
	6.071%

	2008-06
	6.320%
	6.088%
	6.087%
	6.003%
	6.122%
	6.103%
	6.071%

	ESS
	 
	0.00254%
	0.00253%
	0.00209%
	0.00279%
	0.00269%
	0.00248%


In truth, none of the models are able to forecast the magnitude of the monthly changes to a great degree of accuracy.  For the first six months of 2008, the interest rate changes by magnitudes of 16, 5, 5, 12 and 28 basis points while no model predicts a single-month change greater than 3.1 basis points (the ARI(2,1,0) model from January to February).  In fact, the ARI(1,1,0), which was discounted as a possibility for other reasons, gives the lowest error sum of squares of the six models.  The ARI(4,1,0) is next lowest, followed by both models with the moving-average terms which, like the ARI(1,1,0) case, were also previously dismissed using other analytical techniques.

Conclusions

Given the six models analyzed above, we conclude that the original time series of monthly 30-year fixed-rate mortgage commitments can be most accurately modeled as an integrated autoregressive process of order (4,1,0).  However, because none of the models do an especially good job of ex-post forecasting, we conclude that more accurate models exist that can be specified as integrated autoregressive-moving average processes of order (p,1,q) where p > 4 and q > 0.

