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Time Series FALL ‘08

Time Series Analysis of US Divorce Rates (1970 – 2001)
Introduction

Pension and Welfare Actuaries are concerned with modeling contingent events in order to estimate funding that is sufficient enough to cover future obligations.  Most of the factors they are concerned with are typical investment variables like interest, but also any number of demographic factors, like mortality, marriage, and divorce.  Divorce plays a small role but none-the-less does affect future benefit obligations for program participants.  The focus of this study will be to analyze the US national unemployment rates for each year from 1970 to 2001 in hopes of gaining an understanding of what may happen in future years.  This study seeks to develop an effective time series model for the forecasting of future divorce rates.  

Model Specification

Model specification is the first step in time series analysis.  The goal of model specification is to determine the appropriate order of ARIMA model that fits the data.  Several tools can be used to help determine the order of the model all of which stem from a thorough analysis of the initial data
 and values derived from it. 

The first step in determining order is to ensure that the data being used is stationary.  This can be done through observing actual data plots and/or correlograms, formed from the calculated autocorrelations.  The initial data plot shows a rather obvious trend and as a result it is not likely it is stationary.
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As a matter of precaution the autocorrelation function will be looked at to confirm the non-stationary property of the data itself.  If a series is stationary the sample autocorrelation (seen below) should dampen to zero as the lag k approaches infinity.  
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In this case it is almost indeterminable if the autocorrelations are dampening to zero as it seems to be oscillating with a rather large margin around zero.  This confirms that the series is not stationary.  The next step is to take first differences and assess whether or not they are stationary.

The new series formed from the first differences is seen in the graph below.  The graph shows numerous peaks that almost appear to oscillate to some extent.
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This graph does not help determine if the series is stationary, so like before the correlogram is formed from calculating the sample autocorrelations.
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This time the sample autocorrelation function (above) shows a much clearer geometric decline dampening to zero leading one to believe that the first differences are in fact stationary.  To be sure the first few autocorrelations can be analyzed to see the geometric decline.

	Rho
	Autocorrelation

	1
	0.444023

	2
	0.369663

	3
	0.254862

	4
	0.140062

	5
	0.065702

	6
	0.017537


While there is not a simple geometric ratio between the first six autocorrelations, the ratios decline from 83% to 27%, in fact it is almost more of an exponential decline, the relationship is clear enough to assume that the first difference of the divorce rate per 1,000 population is stationary.  There is no indication that this series has a moving average component, especially since a moving average concept would have continuously over or underestimated the initial data set, so as a result, two autoregressive models will be assessed for their effectiveness in the next stage of the modeling process.

Model Estimation

Since we will not using an ARIMA model with a moving average component this task because exponentially less complicated.  The first differenced data will be regressed first using an AR(1) model.  This may be an excellent model given the geometric decline of the autocorrelations, however since they were not a perfectly geometric dampening another form may prove more statistically accurate.  

Using the regression package of Microsoft Excel the AR(1) estimated model is:
yt = -.00117 + .478837yt-1
Adjusted R​​2 = .197013

Given the very low adjusted R2 it is not likely that this is a good model for the data.  
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In addition to the low R2, the autocorrelations, while declining geometrically, do not dampen to zero quickly, pointing towards a possible flaw in the model estimation.  
Given the above assessment an AR(2) model will now be looked at to see if the model’s estimation ability improves.  The AR(2) estimated model is:
yt = -0.013125 + .14675yt-1 + .51209yt-2
Adjusted R2 = .3552
The adjusted R2 has improved significantly yet it is still much lower than one would one for forecasting future values.  In addition to the still low R2 the autocorrelations were once again assessed.  In this case  they  have a much smoother dampening affect towards zero and decline much more geometrically at a rate of approximately 80%.  However, they decline slowly towards zero implying that this model is still not an accurate representation of the series.
	Rho
	Autocorrelation

	1
	0.780242056

	2
	0.665807369

	3
	0.507416703

	4
	0.361622316

	5
	0.267882778


In hopes of gaining a higher R2 an AR(3) model was conducted and the estimated model is:

yt = -0.022919 - 0.071951yt-1 + 0.407747yt-2 +0. 27574yt-3
Adjusted R2 = .3552

For an AR(3) model there was no increase in the adjusted R2 value and thus there is no need to continue into greater degree AR models.  Certainly a more complex and accurate model, probably including a moving average component, could be developed to explain the series, however for the purpose of this analysis the AR(2) model will be accepted as the best forecasting model available.  The next step in the process is now diagnostic checking. 
Diagnostic Checking

Since the AR(1) model showed such a poor representation of the series diagnostic testing will only be conducting for the AR(2) model above.  Diagnostic checking is important for determining if the model is correctly specified.  Some important diagnostic tests are comparing the autocorrelation function to the sample autocorrelation function, the Durbin-Watson Statistic for serial correlation and the Box-Pierce Q Statistic.

Comparing the correlogram from the first difference to the correlogram of the sample autocorrelations of the AR(2) model provides little useful information.  The two graphs seen below are nearly identical with the only noticeable difference being that the autocorrelation function has a less smoothed decline dampened to zero.
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Since comparing correlograms provided little information the next step is to look at the Durbin-Watson Statistic (DWS) to determination if serial correlation is present and causing model inadequacies.  The DWS was calculating from the AR(2) residuals to be approximately 2.3.  This value is an insignificant distance from the critical DWS value of 2.0 implying that there is little likelihood of serial correlation impacting this series.

The Box-Pierce Q Statistic was calculated to see if we can reject the model on the grounds that the residuals are not a white noise process.  The Q Statistic calculated for the AR(2) model is 56.69.  The 90% Chi-squared value is only 36.7412.  The calculated Q Statistic is much larger than the chi-squared value at 90% meaning that we can reject the model since the residuals are not a white noise process.
Despite what would be a rejection of the model by the Box-Pierce Statistic, the AR(2) model will be used for the final step of the modeling process just to demonstrate the entire cycle.  The final model is the AR(2) specification with coefficients rounded to three decimal places as follows.  

yt = -0.013 + .147yt-1 + .512yt-2

This model can now be used for forecasting.

Evaluation
The final step in the modeling process is evaluating the accepted model.  In this case the adjusted R2 was low and the model would have been rejected by the Box-Pierce test, so the forecasting ability of the model is not likely to be good.  A good process to check accuracy during the evaluation stage is to use ex-post forecasting.  Ex-post forecasting is to use values that are outside the range of those used to generate the model but still already known, in the past.  In this case values for 2002 through 2005 were known in advance and will act as the baseline for the ex-post forecasts.  The forecasted values for the next 4 years, using the final AR(2) model, are:

	Forecast

	
	

	Year
	Divorces per 1,000 population

	2002
	2.7254

	2003
	2.6377

	2004
	2.6448

	2005
	2.4765


The actual values from these years were:

	Year
	Divorces per 1,000 population

	2002
	4.1

	2003
	3.8

	2004
	3.7

	2005
	3.6
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The graph above shows the two estimates plotted side by side.  It is clear that the forecast consistently underestimates the actual values significantly.  This is not surprising given the poor results during the specification and diagnostic testing phases.

Conclusion

The AR(2) model chosen was a poor model for the series of data.  Ideally a more sophisticated model could be developed.  This model should not be relied upon in a real situation.  An ideal model would have a high R2, no serial correlation, white noise residuals, and would make good theoretical sense.  The largest flaw in this model may be that divorce rates follow cultural trends that may not have any easy to follow pattern.  Time series modeling is an art as much as it is a science and no model will be perfect but the statistician or actuary can at least hope to capture the series effectively enough to provide reasonably reliable estimates.  Estimates of course are never perfect given unforeseen events and typical errors in forecasting.
APPENDIX A.1

Initial Data

	Year
	Divorces per 1,000 population

	1970
	3.5

	1971
	3.7

	1972
	4

	1973
	4.3

	1974
	4.6

	1975
	4.8

	1976
	5

	1977
	5

	1978
	5.1

	1979
	5.3

	1980
	5.2

	1981
	5.3

	1982
	5.1

	1983
	5

	1984
	5

	1985
	5

	1986
	4.9

	1987
	4.8

	1988
	4.8

	1989
	4.7

	1990
	4.7

	1991
	4.7

	1992
	4.8

	1993
	4.6

	1994
	4.6

	1995
	4.4

	1996
	4.3

	1997
	4.3

	1998
	4.2

	1999
	4.1

	2000
	4.2

	2001
	4


� From Table 83 on p. 4 of pdf of Section 2 of 2003 Statistical Abstract of the U.S.  Found at � HYPERLINK "http://www.census.gov/prod/2004pubs/03statab/vitstat.pdf" ��http://www.census.gov/prod/2004pubs/03statab/vitstat.pdf�


See Appendix A.1 for data
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