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Time Series Project
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Introduction

For the Time Series project, I analyzed the percentage of females born each year in the U.S. with my name, Elizabeth.  This suggestion came from the NEAS website in a posting by Howard Mahler.  The data was obtained from the following website: www.ssa.gov/OACT/babynames/  I used data from 1960 through 2007.  This type of data is available each year for the top twenty names chosen for each gender.  Elizabeth was in the top twenty for all years.  For several years prior to 1960, Elizabeth was not in the top twenty, and so that is why I only went as far back as 1960.
On the Data tab in the Excel workbook, I have entered the year of birth and the percentage of females named Elizabeth each year.  This is the basis for the analysis.
Data and Analysis

The following chart illustrates the raw data obtained.
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First, I examined the autocorrelations without taking any differences.  The sample autocorrelations do not decline rapidly (i.e., geometrically) to zero, and so I suspect that the series is not stationary.
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I then fit the data into an AR(1) model by regressing the percentage of names in each year (Y variable) on the percentage of names lagged one year (X variable) using Excel’s regression tool.  The AR(1) model is of the form yt = φ1 yt-1 + δ + ε, where ε is a white noise process and is normally distributed with a mean of zero and a variance of 1/T.

The φ1 is almost exactly equal to one (1.0045), which indicates that the time series is a random walk and is not stationary.  The Durbin Watson statistic is 1.23, which indicates positive correlation among the residuals.  The goal is for the residuals to be a white noise process, in which case they are uncorrelated.  Further, the Box Pierce Q statistics are greater than the χ2 values for lags less than 15, which indicate that the residuals are probably not a white noise process.  Thus, all of the above statistics and tests indicate that the time series is not stationary.
Next, I take first differences to see if this time series is stationary.  The following chart illustrates this data.
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The next chart illustrates the sample autocorrelations.  They do decline rapidly to zero and then stay close to zero, which indicates the series is stationary.
[image: image4.emf]First Differences - Autocorrelation
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I also examine the sample autocorrelations for second differences, to see if this would lend to a better forecasting model.  The following chart shows the sample autocorrelations for second differences.  The autocorrelations do decline rapidly to zero, but there is no indication that second differences is any better than first differences.  First differencing should be sufficient to ensure stationarity.
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After taking first differences, I fit the data to an AR(1) model.  I use the regression tool in Excel again to regress the first differenced percentage of names each year against the first differenced percentage of names lagged one year.  This yields the AR(1) equation: 

yt = φ1 yt-1 + δ + ε, where φ1 = 0.384 and δ = -0.0038%.  The φ1 is between -1 and 1, which indicates stationarity.  The Durbin Watson statistic is 1.983, which is almost 2.  This indicates that the regression has no serial correlation.  The Box Pierce Q statistics are less than the χ2 values for all lags, which leads me to accept the null hypothesis that the residuals are a white noise process.  Based on these results, the time series model is an AR(1) process.
The following chart illustrates the forecasted values with an AR(1) model versus the actual first differenced data.
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To be sure, I also fit the first differenced data to an AR(2) model.  I do this with Excel’s regression tool and regress the first differenced percentage of names each year on the first differenced percentage of names lagged one year and on the first differenced percentage of names lagged two years.  The AR(2) model has a Durbin Watson statistic of 1.96, which is not significantly different from that of the AR(1) model.  Also, the Box Pierce Q statistics are similar for the AR(1) and AR(2) models.  I conclude that an AR(2) model would not add any significant benefits to forecasting.  
Conclusion

I select the AR(1) model using the first differenced data for the time series.  Since second differencing and the AR(2) model using first differenced data did not appear to add any significant benefits to the time series model, I used the principal of parsimony to select the simpler model.
