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Introduction 

In this project, I will use incurred Property Damage (PD) claim frequency data and fit two types of 

models: exponential fit over time and regression model using two independent variables. I will then focus 

on the residuals from the regression model and use moving average (MA) correction for serial correlation 

to improve the Durbin-Watson statistic. Finally, I will generate an ex-ante conditional forecast and 

compare the trend obtained this way to the constant growth rate of the exponential model.  

All work is done with Excel and EViews.  

Models 

Exponential Model: 

Traditional actuarial methods use exponential fits to predict claim frequency and severity trends. The 

insurance data (Y) is assumed to be an exponential function of time (t): 

, = .(/) = 0123  

The parameters α and β maximize the correlation between f(t) and Y, and are estimated by taking 

logarithms of both sides and fitting the log-linear regression equation:  

78, = ln90123:  

78, = ln 0 + </ 

or 

,′ = α′ +</ 

where lnY = Y′, α′ = lnα, and t is time. The estimates of α and β are obtained by the Ordinary Least 

Squares procedure applied to lnY. The exponential method can be highly accurate but it depends on the 

assumption that future trends will resemble those from the past. It also does not take into account 

changing economic circumstances which may have significant effect on the insurance data.  

In general, claim frequency data for Bodily Injury and Property Damage is known to be quite variable and 

as a result the exponential curve does not fit the data well over a long period of time.  



Regression Model:  

The regression model that I will present, assumes that frequency data is dependent on economic 

conditions. In particular, I will be exploring the effect of unemployment and relative price of gasoline on 

the claim frequency.  

Model 1: 

In this model, I will use both independent variables in the regression: 

,B = 0 + <CDCB + <EDEB + FB 

Model 2: 

In this model, I will combine both independent variables into a weighted average variable Z and use: 

,B = 0 + <GB + FB 

Here Z = wCXC + wEXE and wC + wE = 1. The weights, wL, are determined using Solver such that the 

correlation between Z and Y is maximized.  

In order to choose between Model 1 and Model 2, I will examine their statistical properties.  

Analysis 

Exponential Model: 

The incurred PD frequency data (INC_PD_FREQ) covers the time period from the fourth quarter of 2001 

to the third quarter of 2007 – a total of 24 points. Below are the results from the exponential fit which I 

did with Excel. The variable TIME runs from 1 to 24. 

Regression Statistics 

Multiple R 0.9774 

R Square 0.9552 

Adjusted R Square 0.9532 

Standard Error 0.0158 

Observations 24 

 
ANOVA           

  df SS MS F Significance F 

Regression 1 0.1165 0.1165 469.4554 0.0000 

Residual 22 0.0055 0.0002     

Total 23 0.1220       

 



  Coefficients 
Standard 

Error t Stat P-value 
Lower 
95% 

Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept 1.4709 0.0066 221.5670 0.0000 1.4571 1.4846 1.4571 1.4846 

TIME -0.0101 0.0005 -21.6669 0.0000 -0.0110 -0.0091 -0.0110 -0.0091 

 

The fitted model is:  

78(INC_PD_FREQW) = 1.4709 − 0.01/ 

And equivalently, in exponential form: 

INC_PD_FREQW = 4.3529e\].]CW 

Thus, the claim frequency data grows at a constant rate of -1.00%. (This is a decline of 1.00% in every 

quarter). The following graph shows the actual data and the exponential fit. 

 

 

 

Regression Model:  

The regression models for PD claim frequency includes four quarter moving average of the civilian 

unemployment rate (RUC_MA) and a four quarter moving average measure of the relative price of 

gasoline (RELGAS_MA), defined as the ratio of the price deflator for consumption of gasoline and oil to the 

price deflator for personal consumption expenditures, as independent variables.  

Both the unemployment rate and the relative price of gasoline are expected to be inversely related to the 

incurred PD frequency data. If there are fewer people traveling to work, traffic density is reduced, 

lowering the likelihood of accidents. When the unemployment rate is high, the volume of business activity 
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is low, which results in a decrease in the usage of commercial vehicles and, therefore, we can expect lower 

claim frequency. When gasoline prices are high compared to prices in general, people and businesses will 

both seek to reduce their driving, reducing traffic density, and claim frequency. When gasoline prices are 

low, the amount of driving and the likelihood of accidents may increase.  

Keeping that in mind, in a model such as  

7bc(INC_PD_FREQB) = 0 + <C7bc (RUC_MAB) + <E7bc(RELGAS_MAB) + FB 

we would expect negative coefficients β1 and β2. If that is not the case, even if the model is statistically 

sound, we should discard it as there will undoubtedly be some shortcoming in the theory, data, 

specification, or estimation procedure.  

So here is the estimation done with EViews:  

Dependent Variable: LOG(INC_PD_FREQ)     

Method: Least Squares       
Sample (adjusted): 2001Q4 
2007Q3       

Included observations: 24 after adjustments     

          

Variable Coefficient 
Std. 
Error t-Statistic Prob.   

          

C 1.8152 0.146938 12.35349 0.0000 

LOG(RELGAS_MA) -0.4103 0.040943 -10.02145 0.0000 

LOG(RUC_MA) -0.2504 0.08582 -2.917872 0.0082 

          

R-squared 0.8802     Mean dependent var 1.3450 

Adjusted R-squared 0.8687     S.D. dependent var 0.0728 

S.E. of regression 0.0264     Akaike info criterion -4.3155 

Sum squared resid 0.0146     Schwarz criterion -4.1682 

Log likelihood 54.7861     Hannan-Quinn criter. -4.2764 

F-statistic 77.1093     Durbin-Watson stat 0.5289 

Prob(F-statistic) 0       
          

 

We can see from the table above is that both variables have the correct sign in the coefficients; both are 

significant at the 99% level, (the Prob. value is less than 0.05), and the R2 is 0.88. However, what is not 

that great here is the Durbin-Watson (DW) statistic of 0.53. A DW statistic of less than 2 indicates positive 

serial correlation in the residuals (DW statistic greater than two indicates negative serial correlation).  

Multicollinearity is something that we should always keep in mind when working with more than one 

independent variable.  Typically, high standard errors with low t-statistics could be indicative of 

multicollinearity. Multicollinearity would also occur if the explanatory variables are sufficiently highly 

correlated. This would make it difficult to separate the effects of one explanatory variable on the 

dependent variable from the effects of the other explanatory variables.  



If we focus on the standard errors and t-statistics of this estimation, we would not suspect 

multicollinearity, but a quick check of the correlation between RELGAS_MA and RUC_MA reveals that they 

are relatively highly correlated1: 

f =
∑(D − Dh)(, − ,h)

i∑(D − Dh)E(, − ,h)E
= −0.80 

Here, X and Y are respectively the two independent variables in the regression model.  

So, keeping that in mind, I introduced an MA term in attempt to improve the serial correlation in the 

residuals. This time, the estimation produced a model that is not statistically sound: 

Dependent Variable: LOG(INC_PD_FREQ)     

Method: Least Squares         

Sample (adjusted): 2001Q4 2007Q3       

Included observations: 24 after adjustments     

Convergence achieved after 11 iterations     

MA Backcast: 2001Q3         

          

Variable Coefficient Std. Error t-Statistic Prob.   

          

C 1.544504 0.186609 8.276679 0.0000 

LOG(RELGAS_MA) -0.34061 0.051496 -6.61426 0.0000 

LOG(RUC_MA) -0.09506 0.108569 -0.87553 0.3917 

MA(1) 0.965875 0.02451 39.40711 0.0000 

          

R-squared 0.961382     Mean dependent var 1.345022 

Adjusted R-squared 0.95559     S.D. dependent var 0.072828 

S.E. of regression 0.015348     Akaike info criterion -5.36471 

Sum squared resid 0.004711     Schwarz criterion -5.16836 

Log likelihood 68.37647     Hannan-Quinn criter. -5.31262 

F-statistic 165.9659     Durbin-Watson stat 1.574768 

Prob(F-statistic) 0       

          
Inverted MA Roots -0.97       

  

Here, the LOG (RUC_MA) term has become insignificant.  

 

The t- statistic is defined as: 

/j\k =
<l − <]

m2
 

                                                           

1
 The formula used is Excel’s CORREL(X,Y). 



It is used to test the null hypothesis that β = 0. This estimation essentially tells us that we cannot reject 

the null hypothesis, or equivalently, that there is no relationship between the unemployment variable and 

the PD claim frequency. This is somewhat counterintuitive considering the previous estimation with no 

MA term.  

One other thing that I noticed from this estimation is that the F-statistic has increased from 77.1 to 166. 

While higher F statistic is what we would hope to obtain, when it is in combination with low t-value, it 

could be an indicator of multicollinearity.  

Having confirmed my suspicions about multicollinearity, I decided to introduce a new variable as a 

weighted average of the two variables used in the model: 

opqrsm_otu = vC opqrsm_ws + vE otu_ws 

I wanted to maximize the correlation between RELGAS_RUC and the PD claim frequency data, so I used 

Excel’s Solver subject to the following constraints: 

0 ≤ vB ≤ 1 

and 

vC + vE = 1 

 

Solver came out with the following values: w1 = 0.84 and w2 = 0.16. The correlation turned out to be 

−0.95.  

Next, I proceeded with estimating the model: 

7bc(INC_PD_FREQB) = 0 + β7bc (opqrsm_RUCB) + FB 

Dependent Variable: LOG(INC_PD_FREQ)     

Method: Least Squares   

Sample (adjusted): 2001Q4 2007Q3   

Included observations: 24 after adjustments   

    

Variable Coefficient Std. Error t-Statistic Prob.   

    

C 1.817543 0.032514 55.90083 0.0000 

LOG(RELGAS_RUC) -0.80951 0.055135 -14.6823 0.0000 

    

R-squared 0.907396     Mean dependent var 1.3450 

Adjusted R-squared 0.903187     S.D. dependent var 0.0728 

S.E. of regression 0.02266     Akaike info criterion -4.6567 

Sum squared resid 0.011297     Schwarz criterion -4.5586 



Log likelihood 57.88098     Hannan-Quinn criter. -4.6307 

F-statistic 215.5703     Durbin-Watson stat 0.5516 

Prob(F-statistic) 0   

 

In this model, the new variable RELGAS_RUC takes the appropriate sign, R2 = 0.91, but the DW statistic of 

0.55 is still too low. So again, focusing on improving the serial correlation in the residuals, I introduced an 

MA term in the model: 

Dependent Variable: LOG(INC_PD_FREQ)     

Method: Least Squares   

Sample (adjusted): 2001Q4 2007Q3   

Included observations: 24 after adjustments   

Convergence achieved after 17 iterations   

MA Backcast: 2001Q3   

    

Variable Coefficient Std. Error t-Statistic Prob.   

    

C 1.791431 0.043699 40.99484 0.0000 

LOG(RELGAS_RUC) -0.768489 0.073427 -10.46609 0.0000 

MA(1) 0.948525 0.035537 26.69143 0.0000 

    

R-squared 0.960762     Mean dependent var 1.3450 

Adjusted R-squared 0.957025     S.D. dependent var 0.0728 

S.E. of regression 0.015097     Akaike info criterion -5.4321 

Sum squared resid 0.004787     Schwarz criterion -5.2849 

Log likelihood 68.18533     Hannan-Quinn criter. -5.3930 

F-statistic 257.0998     Durbin-Watson stat 1.65794 

Prob(F-statistic) 0   

    

Inverted MA Roots -0.95       

 

Now, this model appears to be statistically sound. The R2 has improved to 0.96 and the DW statistic has 

improved to 1.66, narrowing the gap between the statistic’s value and 2, the indication of no serial 

correlation. The specification is as follows: 

7bc(INC_PD_FREQB) = 1.79 + 0.777bc (opqrsm_RUCB) + 0.95FB\C + FB  

Here’s how this model looks compared to the actual data and the exponential fit: 



 

The econometric model attempts to follow the shape of the actual frequency curve, but we can see that 

the exponential fit is also pretty good. 

Forecast 

In order to forecast the model 

7bc(INC_PD_FREQB) = 1.79 + 0.777bc (opqrsm_RUCB) + 0.95FB\C + FB  

we need to have available forecasts for the components of the composite variable RELGAS_RUC. The 

forecast then would be ex-ante conditional – it will depend on the forecast of RELGAS_RUC. I was able to 

obtain forecasts for the two components of this variable, so forecasting the PD claim frequency was 

straightforward. The following graph illustrates the forecast: 
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We can see considerable difference between the exponential line and the econometric model. The model 

appears to predict a greater decline in the claim frequency till about the mid of 2009, after which there 

seems to be an increase. Examining further the % change of the actual frequency data versus the % 

change of the fitted values, we see sharp decline followed by sharp increase. On the other hand, the 

exponential trend is constant: 

 

 

 

For a typical actuarial scenario assuming “trend from” and “trend to” of fourth quarter of 2006 and 

second quarter of 2010, respectively, the model predicts a 5.8% decline in the frequency. If we use the 

fourth quarter of 2007 as the selected “trend from”, the model predicts a decline of 6.6%. Again, these 

numbers are in sharp contrast to the 1.0% decline according to the exponential fit.  
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