Car Price Analysis of Mitsubishi
Section 1.  Purpose of the research

Presently, people’s income and car price are two main problems which affecting car sales. Although economy of the whole world is not really good at this time, the quality and property of cars are still getting better since the improvement of technology. In this article, we would investigate the factors of buying cars which consumers really concern, and analysis that is there any obviously relation between pricing factors and properities of cars.

Section 2. Methods of the research

    I would use SAS program for our regressing module, and choose 4 kinds of cars from Mitsubishi. These 4 kinds of cars are 4-doors vehicle, van, import, and business. Since the kinds of these cars are too complicated, we just select the kinds whose price is under US$33,000. Next I decide 5 variables in my regression module which are horsepower(ps/rpm), Torpque(kg-m/rpm), Displacement(cc), length of axle(mm), and weight of empty car(kg). The original regression module is as following:
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The definition of variables are as following：

Y = Car Price
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 = horsepower
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 = Length of axle


[image: image6.wmf]5

X

 = weight of empty car

Section 3. Research Process







Section 4. Analysis and Results

4.1 Building regression module

Using the collected data and analyzing by SAS system, I got the following results：

The SAS System      

Statistics for Removal

                                           DF = 1,67

                                   Partial         Model

                   Variable       R-Square      R-Square    F Value    Pr > F

                   x1               0.0742        0.7277      25.08    <.0001

                   x2               0.1089        0.6929      36.82    <.0001

                   x4               0.0645        0.7373      21.82    <.0001

                   x5               0.0467        0.7551      15.80    0.0002    
Statistics for Entry

                                           DF = 1,66

                                                    Model

                  Variable        Tolerance      R-Square    F Value    Pr > F

                  x3               0.068111        0.8066       1.61    0.2085

              All variables left in the model are significant at the 0.2000 level.

         No other variable met the 0.1000 significance level for entry into the model.

                                 Summary of Stepwise Selection

          Variable    Variable    Number    Partial     Model

   Step   Entered     Removed     Vars In   R-Square   R-Square    C(p)     F Value   Pr > F

     1    x5                          1      0.6335     0.6335    57.0515    121.00   <.0001

     2    x4                          2      0.0567     0.6902    39.7047     12.63   0.0007

     3    x2                          3      0.0375     0.7277    28.9229      9.35   0.0032

     4    x1                          4      0.0742     0.8018     5.6135     25.08   <.0001
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From the upward results, the R-square value of (
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) are between 63%~80%, and their p-value are all smaller than 0.2. it shows that these 4 variables are the main variables in our regression module.

4.2 Collinearity Determination
Next we use variance inflation factor (VIF) to determinate the collinearity of our module, VIF measures the impact of collinearity among the X's in a regression model on the precision of estimation. It expresses the degree to which collinearity among the predictors degrades the precision of an estimate. Typically a VIF value greater than 10 is of concern. 

Parameter Estimates

                           Parameter       Standard                              Variance

      Variable     DF       Estimate          Error    t Value    Pr > |t|      Inflation

      Intercept     1      -61.84002       11.21343      -5.51      <.0001              0

      x1            1     2073.49884      414.03984       5.01      <.0001       11.06553

      x2            1    -3896.78072      642.19905      -6.07      <.0001        8.02016

      x4            1        0.02297        0.00492       4.67      <.0001        2.19466

      x5            1        0.02802        0.00705       3.97      0.0002        5.58756
Since the VIF of 
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 is greater than 10, it means that 
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 is almost a linear combination of other factors. Hence we can delete 
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 in our regression module. The results after deleting 
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 are as following:

Parameter Estimates

                           Parameter       Standard                              Variance

      Variable     DF       Estimate          Error    t Value    Pr > |t|      Inflation

      Intercept     1      -61.28908       13.04804      -4.70      <.0001              0

      x2            1    -1599.46153      522.98118      -3.06      0.0032        3.92790

      x4            1        0.02482        0.00571       4.35      <.0001        2.18229

      x5            1        0.04560        0.00711       6.41      <.0001        4.20242
Since the VIP of 
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 are smaller than 10, the collinearity is improved after deleting 
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. Next we look at the following Correlation Coefficients Matrix,
Pearson Correlation Coefficients, N = 72

                                   Prob > |r| under H0: Rho=0

                   x1            x2            x3            x4            x5             y

     x1       1.00000       0.93412       0.94753       0.71117       0.89820       0.75962

                             <.0001        <.0001        <.0001        <.0001        <.0001

     x2       0.93412       1.00000       0.92379       0.69579       0.85564       0.61083
               <.0001                      <.0001        <.0001        <.0001        <.0001

     x3       0.94753       0.92379       1.00000       0.66465       0.91534       0.73093

               <.0001        <.0001                      <.0001        <.0001        <.0001

     x4       0.71117       0.69579       0.66465       1.00000       0.71960       0.73810

               <.0001        <.0001        <.0001                      <.0001        <.0001

     x5       0.89820       0.85564       0.91534       0.71960       1.00000       0.79593

               <.0001        <.0001        <.0001        <.0001                      <.0001

     y        0.75962       0.61083       0.73093       0.73810       0.79593       1.00000

               <.0001        <.0001        <.0001        <.0001        <.0001
We find that 
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 is negative, but it is positive correlation with y. This is because 
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 and y may have Collinearity. Hence we should delete 
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 in our module. Let’s see the results bellow. 

                                      Parameter Estimates

                           Parameter       Standard                              Variance

      Variable     DF       Estimate          Error    t Value    Pr > |t|      Inflation

      Intercept     1      -38.41829       11.32122      -3.39      0.0011              0

      x4            1        0.02093        0.00589       3.55      0.0007        2.07395

      x5            1        0.03012        0.00529       5.69      <.0001        2.07395
Since the results are obviously without Collinearity, we should test that if the residuals are normally distributed.

Pearson Correlation Coefficients, N = 72

                                  Prob > |r| under H0: Rho=0

                                                      resid        nscore

                      resid                         1.00000       0.98436

                      Residual                                     <.0001

                      nscore                        0.98436       1.00000

                      Rank for Variable resid        <.0001
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We can see that Gchart is skewed left, it shows that the residuals may not normally distributed. Hence we reconsider to transfer these 5 variables by Box-cox in order to improve our module.

4.3 Variables Transfer

The results of Box-cox transformation is as following:

Transformation Information

                                          for BoxCox(y)

                                Lambda      R-Square    Log Like

                                 -3.00          0.81    -201.192

                                 -2.75          0.82    -193.537

                                 -2.50          0.83    -186.217

                                 -2.25          0.84    -179.310

                                 -2.00          0.84    -172.909

                                 -1.75          0.85    -167.114

                                 -1.50          0.86    -162.031

                                 -1.25          0.86    -157.758

                                 -1.00          0.86    -154.373

                                 -0.75          0.86    -151.925

                                 -0.50          0.86    -150.422 *

                                 -0.25          0.85    -149.834 <

                                  0.00 +        0.85    -150.095 *

                                  0.25          0.84    -151.116 *

                                  0.50          0.83    -152.800

                                  0.75          0.82    -155.046

                                  1.00          0.81    -157.766

                                  1.25          0.79    -160.881

                                  1.50          0.78    -164.324

                                  1.75          0.77    -168.045

                                  2.00          0.75    -172.001

                                  2.25          0.74    -176.161

                                  2.50          0.73    -180.501

                                  2.75          0.72    -185.001

                                  3.00          0.70    -189.647

                              < - Best Lambda

                              * - Confidence Interval

                              + - Convenient Lambda
The best value of λ is –0.25, but the confidence interval of λ is (–0.75,0.25), it means the function of λ is stable in this interval. We reuse Y*=lnY in our regression module first.

Statistics for Removal

                                           DF = 1,66

                                   Partial         Model

                   Variable       R-Square      R-Square    F Value    Pr > F

                   x1               0.0339        0.8128      14.57    0.0003

                   x2               0.1484        0.6983      63.89    <.0001

                   x3               0.0130        0.8337       5.59    0.0210

                   x4               0.0716        0.7751      30.80    <.0001

                   x5               0.0335        0.8132      14.42    0.0003
The results of SAS program shows that (
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) are the best subspace of Variable X, the R-square of these 5 variables are between 69%~84%, and their p-value are smaller than 0.2, so we use 
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 in our module.

4.4 Affection of Number of Variables

In order to know that if 
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(weight of empty car) affects the car price, we analyze this variable by two modules separately.

Module 1:

Analysis of Variance

                                             Sum of           Mean

         Source                   DF        Squares         Square    F Value    Pr > F

         Model                     1        4.22779        4.22779      80.19    <.0001

         Error                    70        3.69045        0.05272

         Corrected Total          71        7.91824

                      Root MSE              0.22961    R-Square     0.5339

                      Dependent Mean        4.08249    Adj R-Sq     0.5273

                      Coeff Var             5.62426

Module 2:

Sum of           Mean

         Source                   DF        Squares         Square    F Value    Pr > F

         Model                     2        5.52409        2.76205      79.60    <.0001

         Error                    69        2.39415        0.03470

         Corrected Total          71        7.91824

                      Root MSE              0.18627    R-Square     0.6976

                      Dependent Mean        4.08249    Adj R-Sq     0.6889

                      Coeff Var             4.56274
From these two result tables, the R-Square of 3 variables module is 0.5339. If we add the forth variable, the R-Square would be 0.6976, it obviously increases 15% R-Square value, hence adding this variable is reasonable.

4.5 F-testing

Now we want to know that if the variable 
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 is worth to add into our module with 
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 and 
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, the F-testing is necessary. 

To analyze the necessary of 
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 in our module, we have to test the following hypothesis by F-testing:
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                   Test 1 Results for Dependent Variable y_new

                                                   Mean

                   Source             DF         Square    F Value    Pr > F

                   Numerator           1        1.29630      37.36    <.0001

                   Denominator        69        0.03470
We can find out that p-value is smaller than 0.05, hence it is clearly to reject 
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, so we can conclude that the weight of empty car would affect car price.
4.6 Intercept Testing

In order to analyze if our module pass the original point, we have to do intercept testing:  
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Parameter Estimates

                                   Parameter       Standard

              Variable     DF       Estimate          Error    t Value    Pr > |t|

              Intercept     1        2.40318        0.19046      12.62      <.0001

              x4            1     0.00032361     0.00009907       3.27      0.0017

              x5            1     0.00054416     0.00008903       6.11      <.0001
The results shows that 
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 is 2.40318 and p-value <.0001, it means we could reject 
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=0 under the significant level 0.05, thus our regression line is not through original point. 
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Comparing the two tables upward, R-Square of the module without intercept is 0.8674, which is greater than the R-Square of the module with intercept (0.7483), hence we can obtain the regression module as following:
y=0.95666X1－０.45550X2＋0.98481X3＋0.93280X4
4.7 Outlier Checking
We can check the residuals by t-statistic. The residual would be an outlier if its t-statistic absolute value is greater than 3. The following graph shows that there is no outlier in our residuals.
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4.7 Normality of Residuals
1). Test for Normality of Univariate :

Tests for Normality

                   Test                  --Statistic---    -----p Value------
                   Shapiro-Wilk          W     0.981868    Pr < W      0.3863

                   Kolmogorov-Smirnov    D     0.076894    Pr > D     >0.1500

                   Cramer-von Mises      W-Sq  0.052502    Pr > W-Sq  >0.2500

                   Anderson-Darling      A-Sq   0.33775    Pr > A-Sq  >0.2500
Since the p-value of tests for normality are all greater than 
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, thus the residuals should be normally distributed.

2). Q-Q Plot and Gchart Histogram
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Q-Q plot shows that the residuals almost lie on a straight line, thus it proves the result of 1).
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The Gchart is nearly symmetric, therefore we can conclude the residuals are normally distributed.
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This is the spread plot of residuals vs. predict value, which can use to check if our module is appropriate. We can find that the residuals spread randomly, hence our regression module is suitable for our real data.

Section 5. Conclusion 

As the results of our analysis, horsepower, torque, displacement, length of axle, and weight of empty car all effect car price, but after collinearity determination and variables transformation, horsepower and torque have collinearity, displacement has lower effect to car price. Finally, we decided two variables regression module as following:
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The regression module of original data Y is as following：
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Parameter Estimates

                                   Parameter       Standard

              Variable     DF       Estimate          Error    t Value    Pr > |t|

              Intercept     1        2.40318        0.19046      12.62      <.0001

              x4            1     0.00032361     0.00009907       3.27      0.0017

              x5            1     0.00054416     0.00008903       6.11      <.0001
Appendix.

data a;

input x1 x2 x3 x4 x5 y;

cards;

0.01273
0.00309
1200
2000
990
     31

0.01273
0.00309
1200
2000
820
     31.2

0.02073
0.0048
1200
2470
1140 
31.9

0.01273
0.00309
1200
2000
880
     32.2

0.01273
0.00309
1200
2000
990
     32.5

0.01273
0.00309
1200
2000
990
     33.1

0.01273
0.00309
1200
2000
990   
34.4

0.01217
0.0027
1200
2610
1000
35.1

0.01217
0.0027
1200
2610
1185
38.3

0.01217
0.0027
1200
2610
1080
38.9

0.01217
0.0027
1200
2610
1020
39.1


0.04724
0.02188
4000
2750
2220
90

0.024
0.0064
2000
2780
1690
90.9

0.04724
0.02188
4000
3350
2240
91

0.024
0.0064
2000
2780
1690
91.9

0.04724
0.02188
4000
3760
2260
92

0.02945
0.00558
2400
2750
1590
94.9

0.04724
0.02188
4000
3350
2345
96

0.024
0.0064
2000
2780
1690
96.9

0.04724
0.02188
4000
3760
2365
97

;

proc reg;                                                                                                                                                 

 model y=x1-x5 /selection=stepwise slentry=0.1 slstay=0.2 details;

model y=x1 x2 x4 x5/vif;

model y=x2 x4 x5/vif;

model y=x4 x5/vif;

model y=x4;

model y=x4 x5;

test x5;

model y=x4 x5 / covb;

output out=summary p=pred r=resid student=resid_sd;

 proc gplot;                                                                                                                                               

 plot resid_sd*pred/ vref=(-3,0,3);

proc rank normal=blom;

var resid ;

ranks nscore;

proc univariate normal;

var resid;

proc gplot;

plot resid*nscore;

proc gchart;

vbar resid;

proc corr;

var resid nscore;

proc gplot;

plot resid*pred/vref=0 ;

run;
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