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Home Values

The purpose of this project is to build a regression equation to explain the variation in median owner-occupied home values among a sample of 22 cities.  I chose the 22 cities at random from a list of cities in California, Arizona, Nevada, and Utah.  A list of the specific cities chosen is included in the accompanying Excel file and is also included in a table towards the end of this report.  I included both large and small cities from each state, as well as cities with varied economic bases.  I selected nine possible explanatory variables to use based on intuitive judgment as to what factors affect the supply and demand of houses.  The explanatory variable candidates, as well as their simple correlation to home values (based on our sample), are listed below.
	Independent Variable
	Simple Correlation with Home Values

	average household size
	19%

	college grads per capita
	49%

	% of population in labor force
	8%

	vacant housing %
	-21%

	violent crimes per capita
	-10%

	property crimes per capita
	-61%

	owner occupied housing %
	32%

	median age
	31%

	median household income
	84%


Violent crimes per capita and property crimes per capita are for 2003 and were obtained from http://www.cityrating.com/crimestatistics.asp.  All other statistics, including median owner-occupied home values, are for 2005 to 2007 and were obtained from http://www.census.gov.  The variables attached to each city are included in the accompanying Excel file.  
It seems that from the simple correlation of these variables, many of them are good candidates for explaining home values.  However, median household income has the highest simple correlation in absolute value and thus appears to have the greatest explanatory power.  Let’s begin our regression analysis of home values using a simple single variable regression model.  Below is a table of some regression statistics I obtained by using the Excel “Regression” add-in.

	Regression Statistics
	
	
	

	Multiple R
	0.844800501
	
	
	

	R Square
	0.713687886
	
	
	

	Adjusted R Square
	0.69937228
	
	
	

	Standard Error
	104210.5513
	
	
	

	Observations
	22
	
	
	

	
	
	
	
	

	ANOVA
	
	
	
	

	 
	df
	SS
	MS
	F

	Regression
	1
	      541,404,653,273 
	      541,404,653,273 
	49.85383793

	Residual
	20
	      217,196,779,908 
	        10,859,838,995 
	

	Total
	21
	      758,601,433,182 
	 
	 

	
	
	
	
	

	 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept
	      (132,201)
	                     73,929 
	                     (1.788)
	0.088901782

	median household income
	            9.40 
	                        1.33 
	                      7.061 
	7.58621E-07


Using this single variable model, we are able to obtain a high R Square value of 0.714; this is strong evidence that median household income does indeed correlate with higher home values.  To formalize this relationship, we can perform an F test using the regression sum of squares (RSS) and error sum of squares (ESS) to determine if this variable does a good job of explaining the variation or our dependent variable.  The F test will test the null hypothesis that the regression coefficient of our independent variable is so close to zero that we can’t really tell if it is caused by randomness or not, which is to say that the variable does not help us explain home values in any significant way.  The F statistic for the test would be (RSS/1)/ (ESS/20) = 49.85.  We need to compare this value to the F distribution using 1 and 20 degrees of freedom.  The F statistic needs to be above 4.35 to be significant at the 5% level, and above 8.10 to be significant at the 1% level (these are the two most common significance levels to test at).  The F statistic in this test is significant at the 1% level; in fact, it has a P-value of 7.6x10^-7, which is very significant indeed.  So in this test we can reject the null hypothesis that the regression coefficient is not significantly different than zero.  This simple regression seems to do a great job in explaining home price variation; can we add any more accuracy by including any of the other variables?
Let’s first start by observing a regression model that includes all of the potential explanatory variables listed above.  Below are the regression statistics for this second model.

	Regression Statistics
	
	
	

	Multiple R
	0.978769055
	
	
	

	R Square
	0.957988863
	
	
	

	Adjusted R Square
	0.92648051
	
	
	

	Standard Error
	51534.54266
	
	
	

	Observations
	22
	
	
	

	
	
	
	
	

	ANOVA
	
	
	
	

	 
	df
	SS
	MS
	F

	Regression
	9
	      726,731,724,136 
	      80,747,969,348 
	30.40428

	Residual
	12
	        31,869,709,046 
	        2,655,809,087 
	

	Total
	21
	      758,601,433,182 
	 
	 

	
	
	
	
	

	 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept
	         (847,223)
	                   411,478 
	                   (2.059)
	0.061883

	average household size
	          205,673 
	                    57,943 
	                    3.550 
	0.004

	college grads per capita
	             (4,079)
	                   199,816 
	                   (0.020)
	0.98405

	% of population in labor force
	            42,240 
	                   379,049 
	                    0.111 
	0.913111

	vacant housing %
	          269,648 
	                   242,196 
	                    1.113 
	0.287365

	violent crimes per capita
	      10,105,417 
	                8,677,035 
	                    1.165 
	0.266805

	property crimes per capita
	         (420,878)
	                1,055,899 
	                   (0.399)
	0.697192

	owner occupied housing %
	       (1,044,900)
	                   386,447 
	                   (2.704)
	0.019172

	median age
	            16,732 
	                      5,967 
	                    2.804 
	0.015929

	median household income
	              11.47 
	                        2.02 
	                    5.666 
	0.000105


A few items stick out immediately.  First, the R Square has greatly improved from 0.714 using median household income alone to 0.958 using all nine explanatory variables.  The Adjusted R Square has also improved from 0.699 to 0.926, so the increase in R Square seems to justify the additional variables.  We can also perform an F-test to test the null hypothesis that the additional eight regression coefficients are zero, similar to the test we performed for model 1.  The ESS from the original single variable regression is 217.2X10^9, and the ESS from the second regression is 31.8X10^9, so our F statistic would be [(217.2X10^9 – 31.8X10^9)/8]/ [31.8X10^9/ (22-10)] = 8.72.  The critical values for the statistic to be significant at the 5% and 1% levels are 2.85 and 4.50, so the F statistic is significant at the 1% level (with a P-value of 0.000561). W can thus reject the null hypothesis that the additional eight regression coefficients are so close to zero as to be caused by randomness.
Now that we can see that the additional variables add value to the regression, it should be clear that not all of the variables should be necessary.  It is clearly possible that some of the variables may be highly correlated with each other.  For instance, we should expect that cities with a higher percent of college graduates should have higher average income when compared to cities with lower graduates per capita.  We should also expect violent crimes per capita to correlate with property crimes per capita.  The regression coefficient related to each variable is supposed to measure the effect of a change in that variable alone on home values while keeping all other variables constant.  The problem with including explanatory variables that are correlated with each other is that we can’t really measure the effect of a change in one while keeping the other constant, since it will rarely happen that one changes without the other in real life (that’s why they’re correlated).  Thus, with correlated variables included in the same regression, the resulting regression coefficients tend to be less accurate than in a regression with uncorrelated variables.  One of the signs of multicollinearity is an increase of the Standard Error of the correlated variables as compared to a regression that includes only one of the correlated variables.  In this example, the Standard Error for median household income increased from 1.33 in the original regression to 2.02 in the second regression.  This has the effect of decreasing the T statistic for this variable in the second regression.  It does not appear to be a critical change, but we should keep in mind that some of our variables may be redundant.
Which variables should we keep from our second regression?  As an informal test, we can look at the T statistic of each variable; a T statistic above a 2 in absolute value should be considered significant, while those below 2 should be analyzed a little closer (again, speaking informally).  Another test we could perform is an F-test similar to the ones performed earlier.  In this case, we could remove each variable from the regression, recalculate the ESS with the variable removed, and test to see whether the change in ESS justifies the additional variable.  The P-value of the F test for each variable is displayed in the “P-value” column of the above table.  Here, we can perform a formal test of the null hypothesis that the regression coefficient for each variable is not significantly different that zero.  Let’s use a 5% significance level for this test; instead of checking the critical F values, we can just look for P-values below 5%.  The chart above shows that we can reject the null hypothesis for 4 of the explanatory variables: median household income (which we already knew), average household size, owner occupied housing %, and median age.  There are 5 variables where we are unable to reject the null hypothesis: college grads per capita, % of population in labor force, vacant housing %, violent crimes per capita, and property crimes per capita.  This surprised me – wouldn’t people want to pay more money to live in a city that has less crime?  Or, conversely, wouldn’t people pay less to live in a city with higher crime?  I still intuitively believe the answer is yes, but it seems that perhaps the crime level is already reflected in the other variables included in the analysis.  Perhaps crime is higher in cities with lower incomes, less owner occupied households, and younger populations… a different regression would have to be performed to see if this is the case.

Below are the regression statistics for a third model using only the significant variables mentioned above.

	Regression Statistics
	
	
	

	Multiple R
	0.969270773
	
	
	

	R Square
	0.939485832
	
	
	

	Adjusted R Square
	0.925247205
	
	
	

	Standard Error
	51964.99631
	
	
	

	Observations
	22
	
	
	

	
	
	
	
	

	ANOVA
	
	
	
	

	 
	df
	SS
	MS
	F

	Regression
	4
	7.12695E+11
	1.78E+11
	65.98149

	Residual
	17
	45906134311
	2.7E+09
	

	Total
	21
	7.58601E+11
	 
	 

	
	
	
	
	

	 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept
	         (790,839)
	          170,045 
	    (4.651)
	0.000229

	Ave Household Size
	          216,563 
	            41,901 
	     5.169 
	7.71E-05

	% households owner occupied
	      (1,270,276)
	          180,598 
	    (7.034)
	2.01E-06

	Median Age
	           21,308 
	              3,162 
	     6.739 
	3.47E-06

	Median Household Income
	             10.93 
	                0.87 
	    12.505 
	5.34E-10


Here, we can see that the R Square has decreased from our prior regression including all 9 variables; however the Adjusted R Square has not decreased much.  Another observation worth mentioning is that the Standard Error of the median household income variable has decreased from 2.02 in the second regression to 0.87.  Perhaps this is a confirmation of the multicollinearity suspected in the second regression model, and if so, one or more of the 5 excluded variables are highly correlated with median household income.  The T statistics for each variable are very high in absolute value in this regression; we can take this as a sign that each variable is not superfluous.  Also, the P-value of the F test for each variable is very low, so this regression simply verifies our previous conclusion that we can reject the hypothesis that the regression coefficients are not significantly different from zero, however this time we can do it at the 1% significance level instead of the 5% level.  We can also observe that the regression intercept is significant in this version, which wasn’t the case previously.
As a last test, we should verify that we didn’t throw out too many variables from our second to third model.  We can do this by performing another F test.  In this case, the F statistic is 1.057 with degrees of freedom of 5 and 12 for the numerator and denominator, respectively.  Our null hypothesis is that the additional 5 variables between the second and third model have regression coefficients of zero.  The F test is insignificant at the 5% level (the critical value here is 3.11) with a P-value of .4299, so we cannot reject the null hypothesis.  It appears that we are justified in excluding all of these 5 variables.

Now that we have a good regression model to explain the variation in home prices among our sample cities, let’s explore the regression coefficients in more detail.  To reiterate, we have found that median income is highly positively correlated to home values.  In fact, the model suggests that for each $10,000 increase in median household income, home values should increase about $109,000 holding other variables constant.  This seems reasonable and in line with expectations.  Next, the model suggests that cities with higher average household sizes should have higher home values.  Since larger households would in general demand larger homes than smaller households and since larger home are more valuable than smaller homes, this finding is reasonable.  An increase of one person per household will correlate with increased home values of about $217,000 holding other variables constant.  Is this to mean that $217,000 is the cost of one additional room for the one additional person per household?  If so, this would seem to be an overestimate.  Perhaps one additional person leads to demand of more than one additional room; for example, maybe a household needs one room, ½ of a bathroom, 1/5 of an additional family room or den, 25% more yard area, etc.  It could also be the case that higher average household areas correlate strongly with “family oriented” communities, and would justify a higher premium per household as parents value such a family-friendly environment.  In any case, I believe it would be incorrect to interpret this coefficient as simply the average cost of an additional room.  Now, the regression coefficient related to owner occupied housing % seems to be a bit counterintuitive.  After all, we originally saw a positive simple correlation between owner occupancy and home values, but now we see that higher owner occupancy correlates with LOWER home values.  How can this be?  It turns out that the simple correlation between owner occupancy and median income is 0.61, so the positive simple correlation between owner occupancy and home values may have more to do with the higher income level of the owners rather than the percentage of owners itself.  Now suppose we observe two cities with the same median income level but with different owner occupancy percentages.  We could argue that at any given time, the city with the higher owner occupancy would have more homes for sale on the market than the other city (which in turn would have more available rentals than the other city).  This means that the city with more owner occupants will have a greater supply of homes for sale; however the number of buyers in each city (as determined by the income level) should be the same.  Greater supply with no change in demand should lead to lower home values.  The model suggests that for each percentage point increase in owner occupancy levels, home prices should decrease by about $13,000 (so a 10% difference between two cities would correlate with a $130,000 difference in home values).  Lastly, we see that an increase in the median age of city residents correlates with an increase in home values.  At first glance, I would speculate that an older population would have higher pay on average due to greater work experience and accumulated pay increases as compared to a younger population.  I could also reasonably assert that an older population would have a higher number of members per family as people would have had more time to rear children over their lifetimes.  However, this does not explain the regression coefficient as these two factors are already reflected in the regression equation.  One other consideration that is not already included in the regression is that given the same level of income and size of family, and older household would have had more time to accumulate a down payment on a home compared to a younger household.  This should have the effect of increasing the number of buyers in the older community, which should drive up home prices and values.  Also, perhaps the value of home ownership is appreciated more by older households and thus they are willing to pay a premium for owning as compared to younger households, which may have differing priorities.  Perhaps as a side note, we can interpret the meaning of the regression intercept.  The regression suggests that if all of our explanatory variables are zero, then the median home value should be NEGATIVE $790,000 dollars!  I guess the city government of this zero population town is willing to pay someone a substantial amount of money to move in.  It must be a bad town if not even the city government is willing to live there!  Clearly, this regression is not appropriate to use in extreme scenarios (a town with ten citizens, for instance).  This is a common warning with all regression models – the model should not be used to project values far outside the range included within the sample population.
Now how does the output actually look from this regression?  Below is a comparison of the regression output to actual median home values.
	State
	City
	Median Value of Owner-occupied homes
	Regression Output
	Residuals

	AZ
	Sierra Vista
	           189,300 
	         256,350 
	    67,050 

	AZ
	Scottsdale
	           481,000 
	         458,289 
	   (22,711)

	AZ
	Phoenix
	           230,300 
	         257,592 
	    27,292 

	AZ
	Kingman
	           181,900 
	         199,408 
	    17,508 

	AZ
	Prescott
	           324,400 
	         369,383 
	    44,983 

	AZ
	Yuma
	           146,000 
	           77,606 
	   (68,394)

	AZ
	Flagstaff
	           305,700 
	         226,177 
	   (79,523)

	AZ
	Tucson
	           167,500 
	         156,304 
	   (11,196)

	CA
	Simi Valley
	           617,300 
	         611,264 
	     (6,036)

	CA
	Irvine
	           716,300 
	         770,685 
	    54,385 

	CA
	San Diego
	           567,100 
	         491,909 
	   (75,191)

	CA
	Sacramento
	           354,300 
	         343,864 
	   (10,436)

	CA
	Palm Springs
	           398,300 
	         368,040 
	   (30,260)

	CA
	Oxnard
	           573,700 
	         521,851 
	   (51,849)

	CA
	Bakersfield
	           295,900 
	         283,525 
	   (12,375)

	CA
	Thousand Oaks
	           724,600 
	         725,649 
	      1,049 

	CA
	Los Angeles
	           594,900 
	         550,257 
	   (44,643)

	NV
	Las Vegas
	           300,400 
	         368,780 
	    68,380 

	NV
	Reno
	           339,100 
	         358,658 
	    19,558 

	UT
	Logan
	           143,600 
	         176,781 
	    33,181 

	UT
	Provo
	           187,200 
	         264,806 
	    77,606 

	UT
	Salt Lake City
	           205,700 
	         207,322 
	      1,622 


One assumption of regression analysis is that the residuals follow a normal distribution.  The graph below shows a scatter plot of the regression residuals.
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The residuals appear to be normally distributed, with about the same number of positive and negative residuals.  The magnitudes of the positive residuals are also comparable to those of the negative residuals.  There appears to be no irregular pattern here, so we are able to accept the normality assumption.

In conclusion, while median household income does a great job of explaining home values, we can add significantly more value to our explanation by including average household size, owner occupied housing %, and median age.  The regression coefficient for each explanatory variable in model 3 was also seen to be reasonable and explainable, which further validates the numerical support from our regression analysis.  These variables in combination can explain 94% of the variation in home values in our sample, which is incredibly high.  In addition, we found that we cannot conclude that adding any one of the additional 5 independent variables adds any additional value to our regression.
