– NEAS Time Series Final Project –
Gasoline Prices in the Northeast United States

Introduction
The following analysis attempts to employ time series techniques to determine if the price of an unleaded gallon of gasoline in the Northeast United States can be expressed in terms of its past values and movements. Such an analysis might prove useful if it were desired to forecast future observations or characterize the nature of any underlying relationships with respect to time. For example, an investor may wish to speculate the movement of oil futures based on past values in an attempt to find arbitrage opportunities.
The area of focus is restricted to the Northeast United States, comprised of Massachusetts, New Hampshire, Maine, and Connecticut, not for any geographic significance,
 but primarily due to the fact that several time series studies concerning national averages already exist, and it may be interesting to see if any strong patterns exist for this particular subset of the population.

The general process for modeling a time series, inspired by the Box–Jenkins methodology, can be divided into three succinct steps. First, some decision must be made as to the homogeneity of the series; that is, the order d of an integrated process where d is the number of times a series must be differenced to become stationary. Some degree of confidence as to the selection of d can be attained by examining the autocorrelation functions for the original and differenced series. It is also at this stage that the autoregressive (AR) and moving average (MA) components be specified. That is, we must specify the order q of the moving average part and the order p of the autoregressive part of ARIMA(p, d, q).
Second, the time series model is estimated using nonlinear regression. The coefficients 
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 are calibrated to fit an ARIMA model described by 
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 denotes some additive constant, 
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 represent the observations, and 
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 are the parameters corresponding to the autoregressive and moving average parts of the model, respectively. Shortly following the estimation of the model, the modeler must also perform a diagnostic check, which might involve an examination of the autocorrelation function of the residuals, or a chi-square test to determine whether residuals are uncorrelated. Stationarity must also be gauged, which can be conducted through some simple checks such as ensuring that 
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Finally, the model can be evaluated, which can be judged based on how well the model forecasts future outcomes. If more current observations are available, an ex post forecast can be conducted to compare forecasted with actual values. The modeler may wish to minimize a certain statistical quantity, such as root mean square error or Theil’s T2. Otherwise, a historical simulation can be performed.
Data
The data being used for this investigation was extracted from the Bureau of Labor Statistics (BLS).
 A total of 180 observations, 
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, for the monthly price of gasoline were collected, extending from the beginning of 1994 through the end of 2008. A 15-year period was selected because data extending further into history is perceived to be less directly applicable to today’s environment. In addition, a complete 15-year period is believed to be sufficient to capture any strong cyclical trends.
Methods & Analysis
To start, an ordinary plot of the time series is constructed to detect any major trends or anomalies within the data. The x-axis represents the ordered observation number, and the y-axis represents the monthly price of gas in the Northeast United States (that is, 
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, the price of gas in January 1994, and so forth).
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From analyzing this time series plot, it is evident that the average monthly price of gas in the Northeast United States has generally increased over the past 15 years, with notable exception to the lattermost 5 observation points (which correspond to August – December 2008), where prices have dropped dramatically downward. Another general trend is that the price of gas has seemingly become much more volatile in the most recent five years or so. It is unclear what impact this will have on whatever time series model we end up selecting, but it is important to note that in the face of such volatility, it will become increasingly challenging to forecast gas prices with accuracy (this is especially true since we know that gas prices are sensitive to external forces, such as the economic environment).
A graph of the autocorrelation function is useful not only for the purposes of determining the degree of homogeneity, but also to ascertain whether any seasonal trends or cycles exist. If such periodicity exists, the autocorrelation function will manifest this in the form of peaks and troughs occurring at regular, periodic intervals. The order of homogeneity, on the other hand, can be viewed as the number of times the original time series must be differenced to result in a stationary series.
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The correlogram above suggests that the original time series is nonstationary. As the number of lags increase, the autocorrelation function remains large. It would not be appropriate to fit an ARIMA model at this point because d = 0 is not an appropriate choice for the order of homogeneity. As a result, we must difference the series making d > 0 and use intuitive judgment as to the minimal d required such that the differenced time series become stationary.
As for seasonal trends, there do not appear to be any strong peaks or troughs occurring at regular intervals at this point in the analysis, although the correlograms for the soon-to-be-differenced time series may reveal otherwise. It might be hypothesized that gas prices exhibit annual seasonality, with greater gas consumption occurring in the summer months with Northeasterners driving to vacation spots for leisure in those months, and less gas consumption occurring in the winter due to an aversion to hazardous conditions experienced when driving on icy or snowy roads.

Based on the preceding information, it seems appropriate to difference the series once. The autocorrelation function for the first-differenced series is depicted below.
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Emerging from this analysis is the impression that the correlogram does not resemble white noise, and there does appear to be a cyclical trend at lags spaced apart annually. One way of deseasonalizing the data would be to take 12-month differences of observations spaced apart annually and reproducing the first-differenced correlogram. The result is depicted below.
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It would appear that the autocorrelation function for the deseasonalized first-differenced series 
[image: image17.wmf])
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 declines rapidly and remains small. However, the fact that the shape of the autocorrelation function alternates between positive and negative as it dampens to zero suggests that an autoregressive relationship may exist. A deseasonalized second-differenced series (not shown) was also tested and exhibited no signs of further improvement. It is therefore concluded that a reasonable degree of homogeneity is d = 1, and that some annual seasonality has been detected in the price of gas.
As outlined in the Introduction section, the next step is to specify the p and q components of our ARIMA(p, 1, q) model. For specifying the autoregressive part, it is useful to first examine the partial autocorrelation function, for which the order p can be determined by observing p such that 
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 are obtained by solving for successive values of the Yule-Walker equations.
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Based on the above, the partial autocorrelation function has significant spikes at lags 1 and 2, lying well outside of the 95% confidence bands. The function decays rapidly thereafter, indicating that perhaps a second-order autoregressive model might be justified. Therefore, p = 2 will be tested as a possible choice for the order of the autoregressive part of ARIMA(p, 1, q).
Theoretically, a sound choice for q, the order of the moving average part of the model, would be the q such that the autocorrelation function becomes zero for all lags 
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 or greater. Unfortunately, the correlogram for the deseasonalized first-differenced series does not provide adequate guidance as to an appropriate choice for q. This is because dramatic spikes occur even in high lags, particularly around lags 12 and 13. It remains to be seen why such behavior is being observed, primarily since the effects of seasonality have ostensibly been removed.
 Nevertheless, various low-order values of q will be tested, which is not difficult considering that tentative values for p = 2 and d = 1 have already been assigned. It is here that, according to the Box-Jenkins framework, the analysis moves from the specification phase to the estimation phase.
The task, then, is to fit and evaluate various ARIMA models, with adequate regard for the principle of parsimony and various modeling constraints. That is, the model should not be needlessly complicated and, indeed, certain constraints begin to emerge that would prohibit such complexity anyway. For example, Minitab’s ARIMA procedure, using maximum likelihood, does not allow p > 5 or q > 5, so already that limits us to low-order configurations of ARIMA(p, d, q).
As mentioned earlier, the first such models to be tested are of the form ARIMA(2, 1, q), where q is of low order. This will allow some flexibility for the optimal q in the moving average part of the model. Unfortunately, the process of selecting a model is dynamic, not static, so the best choice for q when p = 2 and d = 1 might not be the same when p = 1 and d = 0, for instance. As a result, a variety of models shall be considered. The Minitab output includes a table of final estimates, differencing information, residual sums of squares, and the number of observations. The basic results for ARIMA(2, 1, 2) is presented below:
ARIMA(2, 1, 2): 
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ARIMA Model: 12-Lag Gas Prices 

Final Estimates of Parameters

Type          Coef   SE Coef      T      P

AR   1      0.8677    0.0863  10.05  0.000

AR   2     -0.1579    0.1009  -1.57  0.119

MA   1      0.7233    0.0469  15.42  0.000

MA   2      0.2549    0.0431   5.91  0.000

Constant  0.000466  0.001698   0.27  0.784

Differencing: 1 regular difference

Number of observations:  Original series 168, after differencing 167

Residuals:    SS =  6.44404 (backforecasts excluded)

              MS =  0.03978  DF = 162

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag            12     24     36     48

Chi-Square   58.1   80.0   94.8  104.5

DF              7     19     31     43

P-Value     0.000  0.000  0.000  0.000
This model appears to be problematic for a variety of reasons. The first is that neither 
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 nor 
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 are significant, although this could be the consequence of failing to address some other consideration. Moreover, the Ljung-Box chi-square statistic, given by the equation 
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, where n is the number of observations after differencing, 
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 is the sample autocorrelation at lag k for the residuals, and K is a the number of lags observed at given intervals (here, it is shown on an annual basis), are significant at the 95% level, indicating that we must reject the hypothesis that the residuals are white noise. The issues experienced by the model are further compounded with an analysis of the autocorrelation function for residuals and various residual plots, depicted below.
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It is apparent that the erratic spikes occurring at lags 11 and 12 are distorting the fit of the model. In addition to the autocorrelation function, a normal probability plot, a relative frequency histogram, and residuals plotted against fitted and ordinal values can be constructed to assess whether the model is vulnerable to any systematic flaws.
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Ideally, residuals emerging from the construction of a model should be distributed approximately normally, so as to prevent distortion. To this extent, the normal probability plot above suggests that the residuals, having been plotted against a normal distribution, do not form a straight line. The relative frequency histogram helps determine whether residuals are persistently positive or negative. The graph above shows that there is no apparent bias, but this alone does not make the model acceptable. A plot of residuals against their assigned order confirms our belief that gas prices have exhibited greater volatility in the most recent past, making it extremely difficult to model effectively. The fit appears to be much better in the first ten years than the lattermost five, with some strong outliers possibly distorting the model.
There are many possible ways to proceed from here, but it is evident that the current model is unsuitable for forecasting. Among possible solutions would be to reconfigure the model (that is, modify the orders of p and q), perform further diagnostic checks, transform the data, or focus on a less volatile time period.
 The last of these may be the most preferable action, noting that 2004 – 2008 gas prices may simply be too volatile to model. One advantage of doing this is in using the most recent five years to perform an ex post forecast. Thus, it is decided to truncate the data as of the end of 2003 to remove the effect of any powerful economic cycles and trends. An ARIMA(1, 1, 2) is thus retested upon this abridged data series, yielding the surprising results detailed below.

ARIMA(1, 1, 2): 
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t

B

B

z

B

e

)

6098

.

0

3393

.

0

1

(

)

9074

.

0

1

(

2

-

-

=

-


ARIMA Model: 1994-2003 Gas Prices 

Final Estimates of Parameters

Type      Coef  SE Coef     T      P

AR   1  0.9074   0.0971  9.35  0.000

MA   1  0.3393   0.1093  3.11  0.002

MA   2  0.6098   0.0805  7.58  0.000

Differencing: 1 regular difference

Number of observations:  Original series 120, after differencing 119

Residuals:    SS =  0.266514 (backforecasts excluded)

              MS =  0.002298  DF = 116

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag            12     24     36     48

Chi-Square   15.3   31.7   42.6   53.8

DF              9     21     33     45

P-Value     0.083  0.063  0.123  0.173

Some definite improvements are realized as the result of omitting the last five years of data. The first is that all of the coefficients of the ARIMA model are significant (note that the constant δ was removed due to lack of significance, noted earlier). The Ljung-Box chi-square statistics have experienced dramatic improvement, which bodes well for the hypothesis that the residuals cannot be distinguished from white noise. Finally, the autocorrelation function, as well as the graphical plots analyzed earlier, all look quite a bit better, shown below.
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The spikes seen before have largely dampened or disappeared, making this latest model much more favorable than the first. Even so, no examination would be complete without an analysis of residuals, as seen as follows.
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The normal probability plot is still slightly skewed, though overall much better than that corresponding to the original model. The relative frequency histogram illustrates that residuals are still tightly clustered in the interval [–0.1, 0.1], while the residuals plotted against observation order still indicate some heteroskedasticity, which is the phenomenon that the variance of observations become greater with time. It might be conjectured that gasoline prices have experienced volatility growing with time, even after the most recent volatile periods have been removed. Alas, having passed all of these graphical and statistical diagnostic checks, the model is ready to be evaluated for forecast accuracy.
Conclusion
No analysis would be complete without a look at how well the model has performed relative to subsequent emergence of data. This can be accomplished by constructing a time series plot of 1994 – 2003 gas prices with respect to fitted values, which successively update for all current data to forecast future periods as time moves forward.
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The model appears to have a satisfactory fit, with residuals rarely in excess of 0.1 (as opposed to the original model, for which it was not uncommon to experience residuals in excess of 0.8). One-period ahead forecasts can also be constructed for 2004 onwards:
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Since data for 2004 – 2008 is readily available, such forecasts are easily obtained using the formula 
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 being observed residuals. From analyzing this ex post forecast, it is apparent that the forecasts seem to “react” to the emergence of new data, and thus the model itself could be categorized as reactive rather than predictive. This is partly due to the fact that, as seen, gas prices are quite volatile, particularly in latter years, and with increased volatility usually comes increased unpredictability. 
If it were desired, l-period ahead forecasts could be computed, where l > 1, but as the forecast horizon increases, so do confidence bounds. This means that two- and three- period ahead forecasts will quickly be rendered obsolete when new data emerges, given the highly sensitive nature of the model in relation to gasoline prices.
If anything, this investigation best demonstrated the need to use care when modeling any time series using an ARIMA model, as it is incredibly difficult to accurately forecast even one period ahead when the external environment is uncertain. In particular, the sample time period used must be questioned as to whether such experience can be modeled effectively, or whether too many “shocks” persist to make modeling such a series worthwhile. In this study, gasoline prices were found to be too sensitive to model in recent years, although data extending further into history seemed to provide a better fit.

Nevertheless, the analysis succeeded in demonstrating how to apply various statistical techniques, including the Box-Jenkins methodology, with time series data using an ARIMA model. An extension of this analysis might employ econometric techniques to investigate the determinants of gasoline prices in the Northeast United States.
� Outside of the fact that the reader of this report is likely situated in New England!


� For more information, visit � HYPERLINK "http://www.bls.gov/data/" ��http://www.bls.gov/data/�, scroll down to Regional Resources, and under the Regional Top-Picks, Tables, and Text Files section, click on the “Top Picks” icon next to the New England Information Office (Boston, MA). Then select “Average Price - Gasoline, Unleaded Reg., Per Gallon/ 3.785 liters - Boston - APUA10374714” from the provided list. The data can be customized in a column format, with the appropriate year range by clicking on “More Formatting Options.”


� This should be viewed only as an example; indeed, perhaps the demand for driving is relatively price-inelastic and driving in the treacherous winter months merely increase driving time, thereby increasing overall gas consumption. The exact econometric relationship will not be asserted here.


� It is noted, however, that differencing observations spaced k lags apart is a crude method of removing annual cycles.


� While not shown, several other ARIMA models were tested – including ARIMA(2, 1, 0), (2, 1, 4), (0, 1, 2), (4, 1, 2), and (2, 0, 2) – but none showed enough promise or improvement through diagnostic testing to warrant presenting here.


� The reason an ARIMA(1, 1, 2) was tested rather than an ARIMA(2, 1, 2), which might be more directly comparable to the previous model, is that it the second autoregressive coefficient has persistently lacked significance in all attempted runs.
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