Monthly High Tide for Arena Cove, California Sea Level
Coure: Time Series  Summer 2009  
Objective: 

This paper will provide the analysis of several ARIMA models in an attempt to forecast  monthly highest tide of the month for Arena Cove, CA (Station ID: 9416841). It seems that the highest tide should display seasonality, as the tides are generally believed to be effected by the distance of the earth from the sun. In order to find the best model given these influences we will look at AR(1), AR(2), and ARMA(1,1) models. 
Data:

Data was gathered from the National Oceanic and Atmospheric Administration’s Tidal and Current Database (http://tidesandcurrents.noaa.gov). Data was available for the periods May 1978 to December 1982 and November 1990 to October 2009. For the purposes of this paper Data from January 1991 through December 2008 will be used in order to work with continuous data that represents the seasonal years. The below graph shows the data which shows a distinct seasonal pattern with peaks at the summer and winter solstices and troughs at the autumnal and vernal equinoxes. This is consistent with our assumption that the data will be affected by solar gravitational influences. 
[image: image1.emf]Monthly Highest Tide Data
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Seasonality:
In reviewing the data, There are specific Points that are likely distorting the data. For instance, February of 1998 the high tide was 37.6. This is in contrast to the remaining 17 samples from February which range from 35.42 to 36.78 and have a mean of 36.21. In research, I determined February 1998 extraordinary data was the result of a short term event triggered by two unusual weather patterns (http://pubs.usgs.gov/fs/1999/fs175-99/).We will first smooth the data before deseasonalizing it, in order to dampen the effect of events like this.. The method chosen to smooth the data is to use the average of 3 months including the month before and month after. This will help reduce the volatility of short term events. 
[image: image2.emf]Unsmoothed Data
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[image: image3.emf]Smoothed Data
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I will now need to seasonally adjust the data to remove the short term volatility caused by seasonal fluctuations. In order to remove the seasonality we must take a 12 month average of the data to isolate the seasonal component of the data and set up seasonal indices. We accomplish this by taking the monthly highest tide and the 5 months preceding and 6 months following each monthly data point.  
We now set up a seasonal index by taking a 17 year average of the smoothed data points divided by the original data points.   For example the highest tide for the month of January of 1992 is 36.56 feet. We smooth this by using the data points from August 1991 through July 1992 as the following 36.11 = 1/12 * (36.56 + 36.48 + 36.16+ 35.85 +35.88 + 36.06 + 36.07 + 35.98 + 35.90 + 35.86 + 36.15 + 36.37). The index is the average for each month of the original data divided by the smoothed data. This is done to isolate the seasonal component of the data. The seasonal indices for this data is found in the table below:
	Month
	Seasonal Index

	January
	1.0142

	February
	1.0028

	March
	0.9926

	April
	0.9880

	May
	0.9917

	June
	1.0069

	July
	0.9978

	August
	0.9941

	September
	0.9930

	October
	0.9965

	November
	1.0079

	December
	1.0145


Below is the deseasonalized data showing the effect of removing seasonality. 
[image: image4.emf]Deseasonalized Monthly Highest TIde Data
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Sample AutoCorrleations:

After we removing seasonality, we begin analyzing the sample autocorrelations by calculating the sample autocorrelations and building a correlogram. 
[image: image5.emf]Sample Autocorrelation
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The Sample autocorrelations quickly drop to 0 by k=3. This indicates that we are likely dealing with a low order process, possibly AR(1), AR(2), or ARMA(1,1). The convergence to zero also indicates that the model is stationary. In addition, the graph of the unsmoothed or smoothed data above does not show any trend. This means we are not dealing with a higher order model. 
To verify that we are not working with a white noise process we can perform the Bartlett test.  The Bartlett test indicates that a time series is a white noise process if the autocorrelations follow a normal distribution with a mean = 0 and standard deviation (for our data) of (2 / 2141/2) . Our initial 2 autocorrelations indicate that this model is not a white noise process. The values lie well outside the .14 threshold of the test, giving us 95% confidence that the true autocorrelation coefficient is not zero.  The test however causes concern with regard to several higher lag values which lie slightly outside the 2/(T1/2) threshold. 
Model Specification:
Based on the findings of the Autocorrelation Function, I will look at three potential Models, AR (1), AR (2), and ARMA (1,1).
AR(1): 

I ran a linear regression of the data using an to fit the parameters of an AR(1) model. The X Variable 1 represents the highest tide of the preceding month. 

	Regression Statistics

	Multiple R
	0.608877091

	R Square
	0.370731312

	Adjusted R Square
	0.367748996

	Standard Error
	0.198263321

	Observations
	213

	 
	Coefficients
	Standard Error
	t Stat

	Intercept
	14.03765418
	1.969178477
	7.128685563

	X Variable 1
	0.60996552
	0.054708207
	11.14943349


AR(2): 

I ran a linear regression of the data to fit the parameters of the AR(2) model. The X Variable 1 represents the highest tide of the preceding month. The X Variable 2 represents the highest tide of two months prior. 

	Regression Statistics

	Multiple R
	0.609426983

	R Square
	0.371401247

	Adjusted R Square
	0.365385948

	Standard Error
	0.199082748

	Observations
	212

	
	
	
	

	 
	Coefficients
	Standard Error
	t Stat

	Intercept
	14.45961704
	2.206022388
	6.554610287

	X Variable 1
	0.628192612
	0.069197561
	9.078247941

	X Variable 2
	-0.029957241
	0.069251476
	-0.432586313


ARMA(1,1):

To fit the parameters for the ARMA (1,1) I used Yule Walker equations:  Where ρ1= φ1 - θ1, ρ2=  ρ1 (φ1 - θ1), and ρ1=.6092 and ρ2=.3559. I found that φ1=0.5842   θ1=-.02495. 
Analysis:

In each of the AR(1) and AR(2) model. The t-statistic for the AR(1) model is high indicating that there is a strong relationship between the highest tide in consecutive months. In moving from the AR(1) to the AR(2) model we see only a small improvement in the R Square and almost no change in the Standard Error. As a result we would not prefer the AR(2) model over the AR(1) model. There is not enough justification to add an additional variable.  The AR(1) is the preferable of the two models. 
I will also test for serial correlation using the Durbin-Watson test. 
	Durban-Watson Test

	Model
	Statistic

	AR(1)
	1.96115

	AR(2)
	2.00822

	ARMA(1,1)
	1.96497


Based on these results, we would accept the null hypothesis that the AR(1), AR(2), and ARMA(1,1) models do not exhibit serial correlation.  

Additionally, I will review the Box and Pierce Q statistic. This test checks to see if the residuals are uncorrelated, normally distributed random variables with mean 0 and variance 1/T. 
All Three Models fail the Box and Pierce Q statistic test. This indicates that the probability that the residuals are not just white noise is at least 95%. The results are as follows:

	
	Box and Pierce Q Statistic
	95% Confid

	AR(1)
	336.39
	237.72

	AR(2)
	344.87
	235.59

	ARMA(1,1)
	335.73
	236.65


Conclusion:

I feel that none of the models demonstrated here would make a good fit for this data series. 

In the end the AR(1), AR(2), and ARMA(1,1) do not adequately model the data.  My conclusion is supported by the failure of the Box and Pierce Test, which indicates the models should be rejected. As well as some unexpectedly high correlations in the Bartlett Test that point to the same conclustion. We would likely need to look at more advanced models to search for an ideal forecasting model.
