TS Module 18: Forecast updates and weights HW

(The attached PDF file has better formatting.)

Homework assignment: ARIMA(0,1,1) forecasts

An ARIMA(0,1,1) model for a time series of 100 observations, y_t , t = 1, 2, ..., 100, has θ_1 = 0.4.

- The forecast of the next observation, y_{101} , is 25.
- The actual value of y_{101} is 26.
- The forecast of the next observation, y₁₀₂, is 26.
- The actual value of y_{102} is 26.

We continue to use the same ARIMA model. That is, we don't re-estimate the parameters with the additional data. We forecast y_{103} , the ARIMA value in the next period.

- A. From the actual and forecasted values of y_{101} , derive the residual for the ARMA model of the first differences.
- B. From the actual value of y_{101} and the forecasted value of y_{102} , derive the forecasted value for Period 102 for the ARMA model of the first differences.
- C. This forecasted value for Period 102 is a function of μ , θ_1 , and the residual for Period 101. Derive the μ (mean) of the ARMA model of first differences.
- D. From the actual and forecasted values of y_{102} , derive the residual for the ARMA model of the first differences for Period 102.
- E. Using this residual, determine the forecasted first difference for the next period.
- F. From the forecasted first difference, derive the forecasted value of the original time series.

The values of μ and θ_1 are the coefficients of the ARMA process for the first differences. (Cryer and Chan use θ for an MA(1) process, not θ_1 .)