NEAS Time Series Course Fall 2008
Time Series Analysis of Influenza-Like Illness Rates


With the introduction of the influenza A (H1N1) virus in the spring of 2009, a flu pandemic was felt around the globe.  Throughout 2009, flu rates have spiked outside of the typical flu season.  Testing and financial restraints make it difficult to pin point exactly how much of the flu pandemic is attributable to specifically the H1N1 virus as opposed to the typical flu virus.  The Centers for Disease Control (CDC) have published data tracking Influenza-Like Illness rates (ILI).  Google has published analyses of CDC data on their website “Google Flu Trends” http://www.google.org/flutrends which will be the source of the data for this project.  ILI rates measure the number of physician visits that relate to flu.  The data points used are the number of ILI visits per 100,000 population.  

This project will investigate weekly ILI rates for the United States to see if an ARIMA model can be used to predict future rates.  Flu tends to be seasonal but pandemics, miscalculated vaccines, and other factors can alter the typical flu season in severity and/or cause sharp increases during periods which are not typically associated with flu season.  Below is a graph of the raw ILI rates for the United States.  
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You can see that the height of a typical flu season is around February each year.  December 2003 is known to be an early onset of an intense flu season.  Although that flu season peaked at a higher level, it was not a flu pandemic.  Many factors contribute to the seasonality of flu such as school terms (increases exposure), cold temperatures (viruses can stay alive on surfaces longer colder temperatures), and lower levels of vitamin D (caused by staying indoors more during cold or rainy seasons).  

This project attempts to fit an AR(1) model to the data while using the Excel Add-in for Regression Analysis.  The ILI rate for month T is regressed on the rate for month T-1.  Below are the key statistics produced by the regression tool.

	Observations
	319

	R2
	0.90935

	Adjusted R2
	0.90906

	Standard Error
	369.82371

	F
	3179.94599


	
	Coefficients
	Standard Error
	t-Statistic

	Intercept
	77.06486
	35.85579
	2.14630

	X
	0.96209
	0.01706
	56.39101
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As shown in the chart above, the fitted regression line is
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where [image: image5.png]


 is the ILI rate for week T.  The R2 statistic is 0.90935, meaning that 90.935% of the variance in the dependent variable is explained by the independent variable. Since the R2 and adjusted R2 are so high with only one lagged variable, this project will not include additional lags.  Since the F and t statistics are so large, this suggests rejection of the null hypothesis that there is no relationship between lags (that the coefficient is zero).

The correlogram below drops and oscillates around and getting closer to zero as the lag increases.  When sample autocorrelations move zero, the series is stationary.  If this did not happen, the series should be differenced in hopes that the resulting series would be stationary. The next graph shows the sample autocorrelations of the first differences.  Although this was not necessary to obtain a stationary series, it is interesting to note that the sample autocorrelations oscillate in a tighter pattern around zero after the initial drop.
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Below is the residual plot.  Notice the cluster that is around or below and x value of 2,000.  The mean of the raw ILI rates is approximately 1,725 and the minimum value is 576.  The residual plot suggests that while several high outliers exist, the vast majority of the data points are relatively close to the mean.  This makes sense when you refer to the chart of the raw data, “United States Influenza-Like Illness Rates”, on the first page.
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The Box-Pierce Q Statistic were used to test the null hypothesis that the residuals were generated by a white noise process, an assumption of classical regression techniques for when the regression equation is correct and the explanatory variables completely explain the depended variable.  For 319 variables, the Box-Pierce Q Statistic is 397.7156.  The critical value at a 10% significance level is 376.3141 leading to a rejection of the null hypothesis. 

The Durbin-Watson test is performed to test the null hypothesis that there is no serial correlation.  While the Durbin-Watson statistic is not accurate for lagged regression, it can still give a feel for the presence of serial correlation.  Values for the DW statistic will be between 0 and 4; values near 2 indicate no serial correlation, values below 2 indicate positive serial correlation, and values above 2 indicate negative serial correlation.  This project yielded a DW statistic of 0.75851 which suggests positive serial correlation of the residuals.  Positive serial correlation suggests that when the null hypothesis was rejected using the Box-Pierce Q Statistic in the previous analysis, the null was falsely rejected.

A simple AR(1) model seems to be a decent model to analyze the statistical significance of the raw ILI rates.  However, the model [image: image10.png]Yr =77.06486 + 0.96209Y,_,



 is intuitively too simple to forecast future rates given all of the physical variables (vaccine formulas, exposure changes, weather, virus mutations, etc).  
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